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ABSTRACT 

The generation business in the U.S. is currently undergoing a transition from a 

regulated monopoly toward an uncertain, competitive market. Under the competitive market, 

the price of electric power as well as the corresponding revenue may be much less certain 

than before. These market uncertainties have increased the significance of two critical 

factors in generation planning. These factors are financial risks and managerial flexibilities. 

In order to quantitatively and objectively address these two factors in generation 

planning, in this dissertation, we design and analyze a series of mathematical models based 

on the real options approach for generation planning. Hence, this dissertation can be viewed 

as a comprehensive study of the real options approach in generation planning. 

The dissertation begins with a simple multiple-project single-option model based on 

the Black-Scholes option-pricing formula. This is followed by a single-project multiple-

option model based on geometric Brownian motion process, binomial lattice, and backward 

dynamic programming. 

Next, we design and analyze sophisticated multiple-project multiple-option models 

where the market values of the projects are assumed to be correlated. As before, we employ 

the backward dynamic programming over the lattice to determine the optimal options for the 

multiple projects and the corresponding values of the investment. Also, we investigate the 

roles of the correlation coefficients among projects in decision making and the value of an 

option. 

In addition, we construct and analyze a traditional generation planning model that 

incorporates forced customer outage costs and forced utility outage costs. By incorporating 
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forced customer outage costs, we attempt to take customer satisfaction level into account. 

We compare and contrast the models from the real options approach as well as the traditional 

approach. 

We hope that the results of this dissertation will encourage utilities to effectively 

utilize the real options approach in generation planning under market uncertainties. As this 

approach can address the financial risks and managerial flexibility while the classical 

discounted cash flow approaches can not, we also hope that generation planning can be 

performed more quantitatively and objectively under the new economic uncertainties. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

The electric power industry in many parts of U.S.A. is undergoing a radical change 

from a regulated monopoly toward market competition. When a utility is a regulated 

monopoly, it has a guaranteed fair rate of return in exchange for an obligation to serve. In 

market competition, however, the utility may not expect any guarantee of fair rate of return. 

In such a case, the increased degree of uncertainty has a substantial impact on 

generation planning aspect of the electric utility. For example, if market conditions become 

unfavorable (e.g., a lower electric power price), then a generation unit that has been 

profitable may no longer remain so. This uncertainty implies substantial financial risks in 

generation planning. 

We note that the generation aspect is an important operation for numerous utilities. 

In 1997, the amount of power generated in U.S. A. was 3123 billion kWh's, resulting in $215 

billion worth of retail sales (see e.g., U.S. Bureau of the Census, 1999). Therefore, under the 

new economic uncertainties such as price uncertainties, it is highly desirable to help utilities 

in their decision making process for generation planning. 

Under the new economic uncertainties, the two factors in decision making that have 

become much more significant are: financial risks and managerial flexibility (e.g., the values 

of strategic options). For example, under uncertain, competitive market conditions, expected 

values such as expected profit and expected rate of return have become much less meaningful 

without the corresponding variances (i.e., financial risks). In addition, under uncertainty, the 

realization of cash flows may differ significantly from what a utility may have expected 



www.manaraa.com

2 

initially. As new information arrives and uncertainties about market conditions are resolved, 

the utility may adjust its strategy to capture future opportunities. Therefore, the managerial 

flexibility is also an important factor in decision making. 

The traditional generation planning models, however, may not be directly applicable 

under the new economic uncertainties because they often have been developed under the 

regulated monopoly assumption and financial risks and managerial flexibility have just not 

been the most significant factors. 

Furthermore, the traditional net present value (NPV) approach selects the projects that 

produce positive NPV. However, the traditional NPV is inadequate to properly capture a 

utility's flexibility to adapt and revise later decisions in response to unexpected market 

development. For example, the traditional NPV approach assumes that a new power plant 

will be operated continuously at a given initial scale until the end of its expected useful life. 

In order to quantitatively and objectively address the two significant factors (i.e., 

financial risks and managerial flexibility) in generation planning, we utilize the real options 

approach. The real options approach can capture both financial risks and managerial 

flexibility in a mathematical model. 

In this dissertation, we design and analyze a series of mathematical models based on 

the real options approach for generation planning. Hence, this dissertation can be viewed as a 

comprehensive study of the real options approach in generation planning. The comprehensive 

dissertation begins with elementary models and analyses based on the real options theories to 

generation planning. This is followed by more sophisticated models and analyses developed 

by us. Finally, to enhance relevance, various economic and cost data as well as illustrative 

numerical examples are presented. 
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The major contributions of this dissertation include the following. First, we develop 

comprehensive real options models for generation planning. By comprehensiveness, we 

mean that, with respect to the number of projects and options, we develop models that can be 

applied to different generation planning problems such as multiple-project single-option and 

multiple-project multiple-option problems. Second, we extensively study the strategic 

decision making based on the real options approach when a utility has multiple correlated 

projects. By correlation, we mean that the market values of the completed power plants are 

correlated. Third, we construct a lattice model to approximate multiple correlated geometric 

Brownian motion processes. Relative to the existing literature, our approximation model is 

more accurate as the true geometric Brownian motion process gets more non-linear. Fourth, 

we investigate the roles of correlation coefficients in decision making and the value of an 

option, which provides interesting managerial insights (e.g., the increase in the value of a 

correlation coefficient will decrease the value of an option). Finally, we compare and 

contrast the generation planning processes based on the real options approach and the 

traditional approach with respect to modeling, competition, and usage aspects. 

With this dissertation, we hope that utilities may effectively and efficiently utilize the 

real options approach in generation planning under market uncertainties. As this approach 

can address the financial risks and managerial flexibility while the classical discounted cash 

flow approaches can not, we also hope that generation planning can be performed more 

quantitatively and objectively under the new economic uncertainties. 

The rest of Chapter 1 is organized as follows. In Section 1.2, we show how the entire 

dissertation is organized. In Section 1.3, the summary of contents in each chapter of the 

dissertation is presented. An introduction to the traditional generation planning models is 
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provided in Section 1.4. Meanwhile an introduction to the theories of real options is 

presented in Section 1.5. Finally, in Section 1.6, we review the existing literature in 

traditional generation planning models and real options models. 

1.2 Organization of the Dissertation 

This dissertation consists of 8 chapters. Chapters 2, 3, 4, and 5 provide models based 

on the real options approach. Chapter 2 develops a multiple-project single-option model. 

Chapter 3 describes a single-project multiple-option model where the optimal options for a 

project are determined by backward dynamic programming. 

Chapter 4 presents a two-project multiple-option model where the two projects are 

correlated, and investigates the role of the correlation coefficient in both decision making and 

value of an option. Chapter 5 extends the two-project multiple-option model to a multiple-

project multiple-option model where the multiple projects are correlated. In Chapter 6, a 

revised traditional generation planning model that incorporates customer outage costs and 

utility outage costs is provided for comparison purposes to the real options models. Chapter 

7 compares the real options approach to the traditional approach for generation planning. 

Finally, Chapter 8 summarizes this dissertation and provides directions for future research. 

1.3 Summary of Contents 

In Chapter 2, we develop a multiple-project single-option model. In this model, each 

project has an option to expand its capacity. The value of a project is represented by the 

expanded NPV which consists of traditional NPV and the value of the option. Then, we 
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select the optimal set of projects by maximizing the expanded NPV of selected projects 

subject to budget constraints and option availability constraints. 

The multiple-project single-option model would be useful when there is essentially 

one dominant option for each project. However, when there are multiple options for a 

project, this model may not be applicable. For such cases, in Chapter 3, we develop a single-

project multiple-option model. In this model, a generation planning project represents a 

sequence of options. The selection of an option in one period will affect the selections of 

options in subsequent periods. Therefore, we employ backward dynamic programming over 

a binomial lattice to determine the optimal options for a project and the corresponding project 

value. 

In the single-project multiple-option model, a utility determines which option to be 

exercised based on market condition. Market condition is represented by the market values 

of a completed power plant, which can be modeled as a geometric Brownian motion (GBM) 

process. To avoid complex partial differential equations that may not have analytic 

solutions, we apply the binomial lattice model to approximate the GBM process. 

The single-project multiple-option model is useful if there is essentially one important 

project to be considered. However, when there are multiple projects to be considered, this 

model may not be applicable. As a first attempt to model multiple-project problems, in 

Chapter 4, we develop a two-project multiple-option model where the market values of the 

two completed power plants are correlated. By employing backward dynamic programming 

over a four-branch lattice that approximates the combination of two correlated GBM 

processes, we determine the optimal options for the two projects and the corresponding value 
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of the investment. Furthermore, we investigate the roles of the correlation coefficient in the 

value of an option and decision making. 

Next, in Chapter 5, we extend the two-project multiple-option model to a multiple-

project multiple-option model. First, we approximate the combination of the multiple 

correlated GBM processes by a multiple-branch lattice. Then, as in Chapter 4, we employ 

backward dynamic programming over the lattice to determine the optimal options for the 

multiple projects and the corresponding value of the investment. Also, we investigate the 

roles of the correlation coefficients among projects in the value of an option and decision 

making. 

Thus far, we have discussed the real options approach for generation planning. We 

now proceed to discuss the traditional approach for generation planning. In Chapter 6, we 

provide a traditional generation planning model for comparison purposes to the real options 

models. In this traditional model, we incorporate both forced utility outage cost and forced 

customer outage cost. By including the forced customer outage cost, we attempt to take the 

customer satisfaction level into account. Various comparisons between the real options 

approach and the traditional approach for generation planning are made in Chapter 7. 

1.4 Introduction to Traditional Generation Planning Models 

In general, the purpose of the traditional generation planning models is to determine 

the generation units to be constructed and the amount of power to be produced while the total 

cost including fixed and production cost to a utility is minimized. The cost-minimization 

objective functions in those models are subject to physical constraints such as demand, 

capacity, and reserve margin constraints. This setting may be slightly changed according to 
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the involvement of other operations. For example, if demand side operations such as 

scheduled outage during peak hours are involved, then the utility also wants to determine the 

amount of scheduled outage. 

However, as the electric power industry is moving toward an uncertain, competitive 

market, the traditional models should be revised. One way to revise the traditional models is 

to include the outage costs of customers. In a competitive environment, customer 

satisfaction with the power supply may greatly influence a utility's competitive position. 

Customer satisfaction level can be represented by the outage costs of customers. Therefore, 

the inclusion of the outage costs of customers in a generation planning model will indirectly 

reflect the current competitive environment. 

1.5 Introduction to the Theories of Real Options 

Under competition, in addition to the consideration of risks, the incorporation of a 

utility's flexibility in generation planning is also highly desirable. The options approach can 

quantify the values of flexibility to utilities and support the utilities' project planning and 

management decisions under uncertainties more objectively. 

Basically, the theory of options is a subfield of finance. Options are classified into 

two types: calls and puts. Call options give the option holder the right to buy a fixed number 

of shares of a traded stock for a fixed price on or before a given date. Put options give the 

holder the right to sell the stock for a fixed price on or before a given date. If the option may 

be exercised before maturity, it is called an American option. If the option can be exercised 

only at maturity, it is called a European option. 
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An option is a derivative asset of an underlying asset. Therefore, the value of an 

option depends on the value of the underlying asset. For example, the underlying asset of a 

stock call/put option is the stock. If the value of the stock increases, then the value of the call 

increases and the value of the put decreases. 

There exists an analogy between financial options and opportunities for corporate 

investments. The opportunities for corporate investments can be viewed as financial 

opportunities because the corporates have the right, but not the obligation, to acquire the 

assets of a business. Such opportunities for corporate investments are referred to as real 

options. 

Based on the real options theory, we can quantitatively determine the value of an 

option. This will provide a more accurate estimate of the value of a project when the project 

has operation flexibility. We believe that this enhanced understanding of the values of 

projects will provide better decision support in project selection and management under 

uncertainties. For example, for a project with multiple options at each decision time point, 

we can determine the optimal decisions under different market conditions by maximizing the 

value of a project over the planning horizon (i.e., sequential decision making under 

uncertainties). 

1.6 Literatu re Review 

In this section, we review the literature in traditional generation planning models and 

real options models that are relevant to this dissertation. 
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1.6.1 Traditional Generation Planning Models 

Anderson [4] reviews different types of mathematical programming models that have 

been used for generation planning. Amnions and McGinnis [2] develop a comprehensive 

generation expansion planning model to determine the generation units to be constructed and 

the production level of each new and existing generation unit. Belgari and Laughton [8] and 

Sawey and Zinn [45] develop models for large-scale generation planning for the combination 

of generation and transmission operations. We note that these papers only focus on relatively 

easy-to-quantify factors such as fixed and production cost. 

A few studies in the literature have considered hard-to-quantify factors such as 

customer outage cost and utility outage cost. Hobbs [20] incorporates scheduled utility 

outage cost and scheduled customer outage cost in the objective function of a model (i.e., the 

amount of the scheduled outage is a decision variable). Wang and Min [54], however, 

consider forced utility outage cost (cf. scheduled outage cost of [20]) as a component of the 

total cost to a utility. We note that unlike scheduled outage cost, the forced utility outage 

cost may be substantial. 

In Chapter 6 of this dissertation, we extend Wang and Min's generation planning 

model by considering the forced customer outage cost in addition to the forced utility outage 

cost. By including the forced customer outage cost, we take the customer satisfaction level 

into account. Therefore, the competition in the electric power industry can be indirectly 

reflected in the setting of a traditional generation planning model. 

1.6.2 Real Options Models 

Black and Scholes [10] develop a mathematical model called Black-Scholes option-

pricing formula that prices the value of an option in traditional areas of finance. This is 
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considered as a major development in options theories. Luehrman [33], on the other hand, 

shows an analogy between financial options and opportunities for corporate investments. 

Such opportunities for corporate investments are referred to as real options. Trigeorgis [51] 

summarizes common real options as the option to defer, time-to-build option, option to alter 

operating scale (e.g., to expand, to contract, to shut down and restart), option to abandon, 

option to switch (e.g., outputs or inputs), and growth options. 

Luehrman [33] considers a project to build a new large-scale chemical plant and the 

project has an option to expand the plant's capacity three years later. The value of the option 

to expand can be obtained by using the Black-Scholes option-pricing table, which is 

developed based on the Black-Scholes option-pricing formula. Then, the value of the project 

is equal to the sum of the traditional NPV of the project and the value of the option. This 

framework is applied to develop our multiple-project single-option model in Chapter 2. Via 

our model, we select the optimal set of projects by maximizing the total value of the selected 

projects subject to constraints such as budget requirements. 

We note that Black-Scholes formula is insufficient in the cases of more sophisticated 

models (e.g., multiple-project, multiple-option) because the underlying differential equations 

become quite difficult to solve. A popular way to handle these sophisticated models is by 

employing binomial lattice models (see e.g., [3]). Several papers apply the binomial lattice 

model to determine the optimal sequential options for a project. Pickles and Smith [41] 

apply the binomial lattice model to petroleum properties. Kelly [27] applies the same model 

to mining properties. Teisberg [49] analyzes the construction stage of a generation planning 

project using binomial lattice model. In her model, the plan to construct a power plant 

provides options to proceed, to delay, and to abandon. In our single-project multiple-option 
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model in Chapter 3, we extend the Teisberg's model to include both construction stage and 

operating stage of a generation planning project. By using the binomial lattice model, we 

determine the optimal options for the project under different market conditions and the 

corresponding project value. 

In contrast to the single-project multiple-option models considered in Teisberg [49] or 

in Chapter 3, a utility may consider multiple-project models. Namely, the utility may 

evaluate multiple correlated generation planning projects simultaneously. For example, a 

utility may consider a project for a potential new gas turbine power plant and a project for a 

potential new wind power plant. However, few papers in the literature have addressed the 

issue of correlated projects based on real options. The only paper of which we are aware is 

for mutually exclusive R&D projects [15], which may not be an appropriate relationship for 

generation planning projects. Based on this part of the literature review, in Chapter 5, we 

have developed a four-branch lattice model for two correlated projects. In Chapter 6, we 

have further extended the two-correlated-project model to a multiple-correlated-project 

model. 
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CHAPTER 2. GENERATION PLANNING FOR MULTIPLE PROJECT SINGLE-

OPTION CASES 

2.1 Introduction 

In this chapter, we consider the following problem. Suppose there are multiple kinds 

of generation units. Let a project be constructing a particular generation unit. Hence, we can 

state that there are a multiple number of projects. Once a generation unit is constructed, then 

we assume that there is an option to expand (for each generation unit constructed). Hence, 

we can state that each project has a single option. We will refer to this problem as a 

multiple-project single-option case. 

Under this circumstance, the value of a project consists of the traditional NPV plus 

the value of the option to expand. Hence, the value of a project is represented by an 

expanded NPV. By maximizing the expanded NPV subject to budget constraints and option 

availability constraints, we show how the optimal set of generation planning projects is 

selected. 

The rest of this chapter is organized as follows. In Section 2.2, the Black-Scholes 

option-pricing model, which forms the basis for the multiple-project single-option model, is 

presented. Moreover, in Section 2.3, we present the Black-Scholes option-pricing table 

based on the aforementioned model, which is widely used in practice for simplicity. In 

Section 2.4, we formulate an expanded NPV model as a mixed-integer linear programming 

problem. In Section 2.5, we provide a numerical example illustrating the key features of our 

model. Finally, concluding remarks are provided in Section 2.6. 
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2.2 Black-Scholes Option-Pricing Model 

As mentioned previously, the traditional NPV approach cannot properly reflect 

utility's flexibility to adapt and revise later decisions in response to unexpected market 

developments. However, this does not mean that NPV should be discarded because it does 

contain relevant revenue and cost information. Instead, NPV should be regarded as a 

required input to an option-based, expanded NPV analysis. Suppose that a generation 

expansion planning project (to construct a generation unit) has an option to expand its 

capacity. Then, by the definition of expanded NPV in Luehrman [33], the value of the entire 

project is given by: 

Expanded NPV (entire project) = traditional NPV (Phase I assets) + present value of an 

option (Phase H assets) 

Phase I assets refer to the initial investment for a new generation unit and subsequent 

net cash flows. Phase I assets can be valued using the traditional NPV approach. Phase II 

assets refer to the value of an option to expand created by the initial investment. In this 

section, we will focus on how to estimate the value of an option employing the Black-

Scholes option-pricing model (for underlying technical assumptions and the derivation of the 

model, see Trigeorgis [51], Luenberger [34], Hull [23]). 

The Black-Scholes option-pricing model provides the option's value. When the five 

inputs—present value of the underlying asset (the assets to be acquired when and if the utility 

exercises the option), value of construction expense required for exercising the option, risk-

free rate of return, time to the decision date, and volatility of the underlying asset per unit of 

time—are specified, then the present value of the option to expand is given by equation (2.1). 

We note that, to obtain equation (2.1), it is assumed that the value of the underlying asset 
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follows geometric Brownian motion and the expected value of the option is discounted with 

respect to risk-neutral probability (the details will be presented in Chapter 3). 

V = N(d, )S - N(d2 )Xe" (2.1) 

where 

V = present value of the option to expand (i.e., Phase H assets) 

AT(d\) and N(d2 ) are the values of the cumulative standard normal distribution 

at dx and d2, where 

dx = [ln(—) + (r + 0.5<r 2 )r] / a4t 

d2 = dx —<J-Tt 

S = present value of the underlying assets (can be observed in the market) 

X = value of construction expense required for exercising the option (defined by 

the features of the investment) 

r =risk-free rate of return (can be observed in the market) 

t = time to the decision date (defined by the features of the investment) 

a = volatility of the underlying asset per unit of time (it is often the only 

estimated input) 

N(dx )S can be interpreted as the expected value of S if S > X on the decision date. 

Xe~r' can be interpreted as the present value of AT. N(d2)Xe~" can be interpreted as the 

expected value of Xe~rt if S > X on the decision date. Hence, the present value of the option 

to expand is given by the expected value of the present value of the underlying asset minus 
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the expected value of the present value of construction expense required for exercising the 

option. 

From the above equation, other factors being constant, the value of the option to 

expand is higher if the (1) present value of the underlying asset, S, is higher; (2) time to the 

decision date, t, is longer; (3) value of construction expense required for exercising the 

option, X, is lower; (4) variance of the underlying asset, a2, is higher; and (5) risk-free rate 

of return, r, is higher. 

2.3 Black-Scholes Option-Pricing Table 

Because of the computational complexity, the Black-Scholes option-pricing model is 

converted to a table (called the Black-Scholes option-pricing table). In this section, we will 

employ the Black-Scholes option-pricing table for the value of a European call option (we 

are viewing an option to expand as a European call option because it can be exercised only at 

maturity). Part of the Black-Scholes option-pricing table for the value of a European call 

option is shown in Table 2.1 (i.e., the complete table can be found in [51]). 

Table 2.1 Black-Scholes option-pricing table for the value of a European call option 

NPVq 

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 

0.50 11.8 12.6 13.4 14.2 14.9 15.7 16.5 17.3 18.1 18.9 19.7 20.5 21.3 22.1 22.9 

0.55 13.8 14.6 15.4 16.1 16.9 17.7 18.5 19.3 20.1 20.9 21.7 22.4 23.2 24.0 24.8 

0.60 15.8 16.6 17.4 18.1 18.9 19.7 20.5 21.3 -22.0 22.8 23.6 24.3 25.1 25.8 26.6 

0.65 17.8 18.6 193 20.1 20.9 21.7 22.5 23.2 24.0 24.7 253 26.2 27.0 27.7 28.4 

0.70 19.8 20.6 21.3 22.1 22.9 23.6 24.4 25.2 25.9 26.6 27.4 28.1 28.8 29.5 30.2 
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The same five inputs as for the Black-Scholes option-pricing model are needed for 

the value of an option to expand via the Black-Scholes option-pricing table. This table uses 

NPVq and cr-Jt to find the value of an option to expand as a percentage of the present value 

of the underlying asset. The subscript q of NPVq represents a quotient. NPVq is expressed 

as S/PV(X). We note that PV(Z) represents the present value of X. Since cr2 denotes the 

variance of the underlying asset per unit of time, the multiplication of cr2 and t provides the 

cumulative (over time) variance of the underlying asset. The square root of the cumulative 

variance, cr-Jt, is called the cumulative volatility of the underlying asset. 

In Table 2.1, each number represents the value of an option to expand as a percentage 

of the present value of the underlying asset. Luehrman [33] says, "Option values in this table 

are expressed in relative terms, as percentages of S, rather than in absolute dollars, to enable 

us to use the same table for both big and small projects." 

To demonstrate how to use the Black-Scholes option pricing table, we provide a 

numerical example for the value of an option to expand. The five inputs for this example are 

5 = $12 million, X= $16 million, r = 4%, t = 4 years, and cr = 30% . The present value of the 

exercise price can be calculated as PV(AT) = 16 /(! + 0.04)" =13.6769. Therefore, we have 

cr-yft = 0.6 and NPVq = 12/13.6769 = 0.877. From Table 2.1, the value of the option is 

18.8% (by interpolation) of the present value of the underlying asset. Thus, the value of the 

option to expand is equal to $2,256 million (0.188*12). 

To demonstrate the accuracy of the Black-Scholes option pricing table, we compare 

the above result with the result obtained from the Black-Scholes option pricing formula. To 
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calculate the value of the option using the Black-Scholes option pricing formula, we first 

calculate dx and d2 as 

dx = [In(12 /16) + (0.04 + 0.5 * 0.32 ) * 4] / 0.3 * 4* = 0.0872 

d2 =dx - 0.3 *V4 =-0.513 

Then, we use the standard normal distribution table to obtain 

M 0.0872) = 0.5347, #(-0.513) = 0.304 

Finally, we calculate the value of the option to expand as 

0.5347 *12-0.304 * 16 * e~°M'4 = $2.272 million 

By comparing 2.256 with 2.272, we recognize that the error of using the Black-

Scholes option pricing table is less than one percent (i.e., we consider the value via the 

Black-Scholes option pricing formula as the true value). Therefore, we conclude that the 

Black-Scholes option pricing table produces a reasonable result with relatively less 

computational efforts. 

2.4 An Expanded NPV Maximization Model 

Thus far, we have shown how to obtain the value of an option via the Black-Scholes 

option-pricing table. In this section, we will formulate an expanded NPV maximization 

model for generation expansion planning. We assume that there are multiple projects where 

each project has one option to expand (i.e., a European call option). 

In this model, we maximize the sum of Phase I assets (traditional NPV) and Phase II 

assets (the present value of an option) subject to budget constraints and option availability 

constraints. We note that option availability indicates that it is feasible to exercise an option 
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or to choose not to exercise an option. The corresponding decision variables are binary 

variables for generation expansion planning projects, binary variables for options, and the 

amount of construction budget not used in each period. Therefore, we have a mixed-integer 

linear programming model as follows 

Maximize 
E ,<y, ' 2 ,  

'Z(.NPVr,yJ+P„JS„z1) 
v'=i 

Subject to 

E, - (1 + r)E,_, + £ Xvy, + f, X„z, = B, (2.2) 
/= 1 J=I 

Z j  < y J (2.3) 

where 

J = index of generation expansion planning proj ect, j = 1,...^/ 

NPVfJ — traditional NPV for project j (Phase I assets) ($) 

= S g — X jj , where 

S jj = present value of project fs Phase I assets (assets to be acquired 

for project j) ($) 

Xjj = present value of the construction expense required to construct 

project fs Phase I assets ($) 

y j = binary variable, indicating if generation expansion planning project j is 
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to be constructed (.y -=1 implies construction, y j= 0 implies no 

construction) 

PUJ = value of the option to expand as a percentage of the present value of the 

assets to be acquired when and if the utility exercises the option for 

project j (i.e., Paj can be found in Table 2.1) 

SUj = present value of the assets to be acquired when and if the utility 

exercises the option for project y (i.e., the present value of the underlying 

asset) ($) 

PUjSUJ = present value of the option for project y (Phase II assets) ($) 

Zj = binary variable, indicating if the option for project j is available (zy =1 

implies available, zy = 0 implies not available) 

Er = construction budget unused in period t ($), E0= 0 

r = discount rate 

XI}[ = construction expense required to construct project y" s Phase I assets in 

period t ($) 

X„j = present value of the construction expense required to exercise the option to 

expand for project j ($) 

= t;âhyx"1[ 

XUjl = construction expense required to exercise the option to expand for 

project y in period t ($) 
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Bt  = construction budget available in period t ($) 

t = index of period of time, e.g., year, t= 1 

The objective function is to maximize the sum of Phase I assets and Phase H assets of 

selected projects. It is measured in present worth because the planning horizon can be long 

(ten years or more). 

The budget constraints (2.2) state that in each period a certain amount of budget is 

available for the construction expense required for generation expansion planning projects 

and for exercising the options. The budget that is left in the current period will be carried 

forward to the next period for construction. The budget carried forward earns interest at 

some specified rate of return on short-term investment. We note that Et,Bt, X[Jt, and XIIjr 

in these constraints are not discounted to the present value. 

The option availability constraints (2.3) state that the option for project j is available 

only if project j is selected. We note that option availability indicates that it is feasible to 

exercise an option or to choose not to exercise an option. If project j is not selected (jyy =0 ), 

then the option for project j is not available (zy =0 ). 

The capital budgeting process shown in this model has the following steps: 

(1) Select generation expansion planning projects. 

(2) After the selection of projects, construct the selected projects, given the 

expenses and time durations subject to budget constraints. 

(3) After the construction of selected projects, the option to expand may be 

available, subject to budget constraints. 
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The available, economically feasible expansion options will be exercised in the future 

after uncertainties about market conditions have been resolved (conditions under which an 

option will or will not be exercised can be derived with more sophisticated models; see 

Trigeorgis [51]). 

2.5 An Example 

We now provide a numerical example with hypothetical data to illustrate the 

applicability of our model. In this example, there are three generation expansion planning 

projects. Each project has one option to expand its capacity. The planning horizon is 7 

years. Project 1 is to build generation unit 1 immediately, and the construction of generation 

unit 1 will create an option to expand 3 years later. Project 2 is to build generation unit 2 

immediately, and the construction of generation unit 2 will create an option to expand 4 years 

later. Project 3 is to build generation unit 3 immediately, and the construction of generation 

unit 3 will create an option to expand 5 years later. We note that the entire planning horizon 

is 7 years in this example. However, this planning horizon can be easily extended. 

The rate of return is assumed to be 10%. The budgets for years 1, 2, 3, 4, 5, 6, and 7 

are $250, 100, 100, 400, 50, 50, and 0 million, respectively. The volatility of the assets (for 

expansion of capacity) to be acquired when and if the utility exercises the option for Projects 

1, 2, and 3 is assumed to be 0.4, 0.3, and 0.25 (in $ millions), respectively. The net cash 

flows for Projects 1, 2, and 3 are listed in Tables 2.2, 2.3, and 2.4, respectively. We note that 

the figures in these tables are in millions of dollars. We also note that the cash flows in the 

rows of Phase I and Phase H in Tables 2.2, 2.3, and 2.4 are not discounted. 
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Table 2.2 Net cash flows for Project 1 

Year 1 2 3 4 5 6 7 

Phase I 
Present 
Value 

-125 8 8 7.8 7.3 6.9 103.2 

Phase II -433 
Present 
Value 

-325.3 14.7 18.4 226.6 

Table 2.3 Net cash flows for Project 2 

Year 1 2 3 4 5 6 7 

Phase I -60 -50 -30 
Present 
Value 

-60 -45.5 -24.8 15 15 30 40 

Phase II -58.6 
Present 
Value 

-40 20 20 

Table 2.4 Net cash flows for Project 3 

Year 1 2 3 4 5 6 7 

Phase I -50 -50 
Present 
Value 

-50 -45.5 20 20 20 20 40 

Phase II -193.3 
Present 
Value 

-120 100 

First, we calculate Phase I assets for each project. Second, we calculate the 

parameters NPVq and a4t required for the Black-Scholes option-pricing table. Third, by 

using NPVq and <rV7 as well as the Black-Scholes option-pricing table, we obtain a 

percentage (of the present value of the underlying asset) for the option to expand for each 

project. We note that if the Black-Scholes option-pricing table does not show values that 
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correspond exactly to our calculated values for NPVq and crVz, then we may employ 

interpolation to obtain a percentage. Next, the Phase II assets for each project can be 

obtained by multiplying this percentage by the present value of the assets to be acquired 

when and if the utility exercises the option (SuJ). Finally, the sum of Phase I assets and Phase 

II assets provides the expanded NPV. The results of these calculations are listed in Table 

2.5. 

Table 2.5 Expanded NPV for each project 

Project 1 Project 2 Project 3 

Sn = 141.2 11 t—1
 

0
 

0
 

Sn = 120 
Xn = 125 Xl2 = 1303 = 953 

NPVn — 16.2 (Phase I) NPVn = -30.3 (Phase I) NPVn = 245 (Phase I) 
Sm =259.7 Sa 2 = 40 

0
 

0
 II 

Xm = 325.3 XU2 =40 =120 

259.7 „ 40 100 NPVq = = 0.80 
325.3 

NPVq = — = 1 
40 

NPVq = —— = 0.83 
120 

cr-Jt = 0.4V3 = 0.693 <rV7 = 0.3V4 = 0.6 o-V7 = 0.25V5 = 0.56 
Pm =0.195 Py2 = 0.236 P//3 =0.154 

PmS[n =50.64 (Phase II) PU2SU2 = 9.44 (Phase H) Pff3Srn = 15.4 (Phase II) 

Expanded NPV = 66.84 Expanded NPV = -20.86 Expanded NPV = 39.9 

We now input the results in Table 2.5 into our model. A mixed-integer linear 

programming problem is shown as follows: 

Maximize 

E 's, y 's, z's 

16.2J/, —30.3y2 + 24.5y3 + 50.64z, + 9.44z2 + 15.4z3 

Subject to 
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Ex + 125y, + 60y2 + 50_y3 = 250 

E2 — l.l^j +50_y2 +50y3 =100 

E3 — l.LE2 +30 y2 =100 

E4 -LIE, + 433z, =400 

Es -1.1 Ea +58.6Z2 =50 

E6 —I.IE'J -t-193.3z3 =50 

E1 -IAE6 =0 

z3 ~ yz 

y^yz^y^x,z2,z3  e{0,i} 

Employing the LINDO software package [29], the optimal solution 

is yx =1 ,y2 = 0,^ = 1, z, = 1, z2 = 0,z3 =1 ,EX — 15,E2 =132.5 ,E3 =245.75, EA = 237.32, 

E5 =311.06,E6 =198.86,E1 - 218.75. Hence, Projects 1 and 3 are selected, and the options 

for Projects 1 and 3 are available. The corresponding objective function value is $106.74 

million, which is composed of the expanded NPV of $66.84 million for Project 1 and the 

expanded NPV of $39.9 million for Project 3. 

We note that, by the traditional NPV approach, the NPV of Projects 1, 2, and 3 is -

$49.4 million, -$30.3 million, and $4.5 million, respectively (under traditional NPV, the 

expansion is not an option). Hence, in such a case, only Project 3 may be selected. By the 

real options approach, the expanded NPV of Projects 1, 2, and 3 is $66.84 million, -$20.86 
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million, and $39.9 million, respectively. Hence, Projects 1 and 3 are attractive. The main 

cause for this difference (selecting Project 3 only vs. selecting Projects 1 an-d 3) is that, under 

the real options approach, uncertainty creates opportunities, and opportunities add values to a 

project (the value of an option is nonnegative). 

The Black-Scholes option-pricing model and the subsequent Black-Scholes option-

pricing table are well suited for simple real options with a single decision date. However, for 

those complex real options with many decision dates, special mathematical tools such as the 

binomial option valuation model are required (see Amram and Kulatilaka [3]). 

2.6 Concluding Remarks 

In this chapter, we formulated and analyzed a generation expansion planning model 

for electric utilities based on the options theory. A critical contribution of our model was the 

incorporation of the traditional NPV and the present value of an option to erxpand in the 

objective function of the planning model. By maximizing the expanded NPV subject to 

budget constraints and option availability constraints, we showed how the optimal set of 

generation units to be constructed is determined. 

hi developing this model, we first started with a description of the Black-Scholes 

option-pricing model for the value of an option to expand. Next, we presented the Black-

Scholes option-pricing table based on the Black-Scholes model, which is widely used in 

practice. This table is used to compute the value of the option that is a component in the 

objective function. Once the generation expansion planning model was constructed based on 

the options theory, we provided a numerical example illustrating the key features of our 

model. 
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In this model, we considered budget and option availability constraints. Other 

constraints that can be included in the future are: capacity constraints, reserve margins, and 

reliability requirements. 
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CHAPTER 3. A SINGLE-PROJECT MULTIPLE-OPTION MODEL FOR 

GENERATION PLANNING 

3.1 Introduction 

In Chapter 2, we studied the multiple-project single-option model. In contrast, in this 

chapter, we investigate the case of single-project multiple-option. 

A single project here represents a potential new generation unit. The multiple options 

are, for example, to construct a new generation unit, to defer construction, or to expand the 

constructed capacity level (see e.g., [56]). We note that options may change according to the 

past history of action (or inaction), time, and market conditions. 

Given our definitions of a project and options, we will help utilities to determine the 

optimal sequential decisions over options (to be exercised) for a project. The options 

mentioned here are of strategic nature, and the market conditions here are represented by the 

market value of a completed generation unit. This market value will be utilized as the 

underlying asset for the strategic options. 

In this chapter, the movement of the market value of the completed generation unit is 

assumed to follow the geometric Brownian motion process (see e.g., [48] [49]). Since an 

option is a derivative asset of an underlying asset, the optimal sequential decisions over 

options for the project are determined according to the movement of the market value of the 

completed generation unit. 

In the multiple-project single-option model in Chapter 2, we show how to obtain the 

value of an option by using the Black-Scholes option-pricing model (table). However, since 

our problem involves many options with respect to time, the partial differential equations 
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derived from geometric Brownian motion process are too complex to have analytic solutions. 

Therefore, we employ a binomial lattice model to approximate the geometric Brownian 

motion process (see e.g., [23], [34]). In other words, we assume that the uncertain market 

conditions can be now represented by a binomial lattice model. 

Since we will be sequentially making decisions over options, we will utilize a 

backward dynamic programming formulation (see e.g., [26]). By maximizing the overall 

project value during the planning horizon, we will determine the optimal sequential decisions 

over the options. 

This chapter is organized as follows. In Section 3.2, the real options for generation 

planning are presented. Section 3.3 presents the geometric Brownian motion process that 

represents the evolution of the market value of a completed generation unit. Section 3.4 

shows how to approximate a geometric Brownian motion process by a binomial lattice 

model. Section 3.5 provides the dynamic programming formulation. An illustrative example 

is presented for managerial insights and economic implications in Section 3.6. Finally, 

concluding remarks are provided in Section 3.7. 

3.2 Real Options for Generation Planning 

A generation planning project here represents a sequence of options. The options can 

be divided into two stages. The first stage is the construction stage. During this stage, a 

utility has the options to construct a generation unit and to defer the construction. The 

second stage is the operating stage. During this stage, a utility has the options to operate at 

the constructed capacity level, to expand the constructed capacity level, to operate at the 
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capacity level or expanded capacity level. 

The construction of a generation unit may require several periods (e.g., years) to 

construct. If market conditions are favorable (e.g., the value of the completed generation unit 

is sufficiently large) at the beginning of a period, then a utility may start or continue the 

construction of a generation unit in the same period. During the period of construction, net 

cash flow becomes negative because construction costs occur and no revenues are obtained 

yet. On the other hand, if market conditions are unfavorable (e.g., the value of the completed 

generation unit is sufficiently small) at the beginning of a period, then a utility may defer the 

construction in the same period and wait for new information. During the period of 

deferring, net cash flow is assumed zero. 

A utility starts the operation stage of a generation unit when its construction is 

completed. At the operation stage, the expected net cash flow in a period (i.e., the expected 

profit) is calculated as the difference between the revenue from electric power sales and the 

cost of operation in the same period. If the market condition is as expected (i.e., the value of 

the generation unit is not sufficiently high or low) at the beginning of a period, then the 

utility may operate the generation unit at its constructed capacity in the same period. If the 

market conditions are far more favorable than expected at the beginning of a period (i.e., the 

value of the generation unit is sufficiently high), then a utility may expand constructed 

capacity level in the same period. During this period of the expansion, a utility operates a 

generation unit at its constructed capacity level and constructs the expansion at the same 

time. The total costs are equal to the sum of production costs and expansion costs. The net 
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cash flow now is equal to the difference between the revenue from selling electricity and the 

total costs. 

If market conditions are far less favorable than expected at the beginning of a period 

(i.e., the value of the generation unit is sufficiently low), then a utility may temporarily shut 

down the generation unit in the same period and wait for new information. During the period 

of shutdown, net cash flow is assumed zero. If new information is favorable, then the 

generation unit may be switched from shutdown to operation. If the generation unit had been 

operated at the constructed capacity level before it was shut down, then it would be switched 

to operation at the constructed capacity level. Similarly, if the generation unit had been 

operated at the expanded capacity level, we assume that it would be switched to operation at 

the expanded capacity level (we can also assume that it would be switched to operating at the 

original capacity level without much difficulty). 

Switching from one option to another option requires a switching cost. For example, 

switching from shutdown to operating entails a setup cost. Some switches are not feasible. 

For example, switching from operating at a constructed capacity level to deferring 

construction is not feasible. Therefore, the switching cost in this case is assumed to be 

infinite. 

3.3 Geometric Brownian Motion 

Market conditions can be represented by the market value of a completed generation 

unit. For example, if the market value of a completed generation unit decreases dramatically 

in a period, then deferring may be a good option in the next period. However, at time 0 when 

strategic planning is made for a generation planning project, the generation unit that the 
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project represents does not exist. To estimate the market value of a completed generation 

unit at time 0, we may use a currently existing generation unit that has similar features such 

as capacity and construction costs (see e.g., [40], [48]). 

The market value of the completed generation unit is considered as the major source 

of uncertainties after time 0. Let X be the market value of the completed generation unit. 

According to Teisberg [48], [49], it is reasonable to assume that X evolves stochastically 

over time according to a geometric Brownian motion (GBM) shown in the following 

equation. 

dX = jjXdt + aXdz 

where dz is the differential of a standard Wiener process (with mean 0 and variance dt) for 

the completed generation unit. // is the instantaneous expected rate of return on the 

completed generation unit, cr is the instantaneous standard deviation of the rate of return on 

the completed generation unit. 

3.4 Binomial Lattice Model 

Instead of developing complicated differential equations that may not have analytic 

solutions, we approximate a continuous GBM by a discrete binomial lattice model. In a 

binomial lattice model, the change in the value of X has two possibilities: going up or going 

down. 

These two possible values are defined as the multiples of the value of X in the 

previous period as shown in Figure 3.1 — a multiple u for up ( u > 1) and a multiple d for 

down (d < 1), and nd = 1. The probabilities for up and down arep and 1 - p , respectively. 
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Xu2 

Xud 
X 

Period 0 1 2 

Figure 3.1 Binomial lattice for underlying asset 

We note that the index of periods in Figure 3.1 represents the end of that period or the 

beginning of the next period. 

Approximating a GBM by a binomial lattice model requires two steps. The first step 

is to transform the GBM for X to a process for In X. The second step is to find the suitable 

values for u,d , and pu by matching the binomial lattice model to the process for In X. 

A. Transformation 

Let W = In X , then, we keep terms in dW up to first order in dt as in equation (3.1). 

dW 

= —(// Xdt + oXdz) (3.1) 



www.manaraa.com

33 

It can be shown that (dz )2 is equal to dt. We note that the only nonzero term in 

(dX)2 is a2X2dt. Therefore, we have 

dlnX ={fi — ̂ a2)dt + adz (3.2) 

B. Matching 

We match the expected value of the change in In X in the binomial lattice model to 

the expected value of dhiX in equation (3.2). Also, we match the variance of the change in 

ln^f in the binomial lattice model to the variance of d\aX in equation (3.2). 

Let X(t + At) be the value of X at time t + At. \nX(t + At) in the binomial lattice 

model can be expressed as 

]nX(t + At) = 1nX(t) + Y 

where 

fin m with probability p 
I In d with probability 1 — p 

Therefore, the matching is as follows: 

E\Y] = p\n.u +(1 — p)ln.d 

= (M ~^cr2)At 

vax(Y) = E[Y2]-(E[Y])2 

= (lnw)24p(l — p) = a2 At 

The suitable values for u, d, and p are solved as in [34] 

A " 1  2  

2 2( 

1 1 ^~n°" j— 
/?= — +—( ^ )VÂ7 (3.3) 
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u — e (3.4) 

d = eaiIt (3.5) 

We note that by replacing fJ. by r, risk-free rate of return, p becomes risk-neutral 

probability (for the development of risk-neutral probability, see Appendix A). 

3.4.1 Net Cash Flows of the Options 

Each option has a binomial lattice to represent net cash flows that an option would 

generate if it is exercised. In Figure 3.2, Cs
t (z) represents the net cash flow that occurs at the 

beginning of time t (and state 5) when operating in option i. 

Figure 3.2 Binomial lattices for options 

For some options, net cash flows are undefined in some periods. For example, if both 

the construction and expansion of a generation unit require one period to complete, then the 

earliest net cash flows for the option to operate at an expanded capacity level occur in period 

2. Net cash flows are undefined (UD) in periods 0 and 1. 

c,rv Cf(z) 

Cf(0 
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3.5 Other Numerical Method for the GBM 

In Section 3.4, a GBM process for the underlying asset is approximated by a binomial 

Lattice model. However, the binomial lattice model is not the only method to approximate 

the GBM process. For example, Monte Carlo simulation uses random numbers to sample 

many different paths that the underlying asset could follow (see e.g., [23]). For each path, 

the net cash flow of an option can be calculated and discounted at the risk-free rate of return. 

We note that simulation can provide numerical solution to the value of an option. 

However, as we proceed to more complicated models, such as two-project/multiple-project 

models in Chapters 4, 5, it would be difficult to apply numerical methods such as simulation 

to do further analysis (e.g., investigation of the roles of correlation coefficients among 

projects). 

3.6 Dynamic Programming 

Because the selection of an option in one period will affect the selections of options 

in subsequent periods, the use of backward dynamic programming is necessary. We solve 

the generation planning problem recursively, starting from the end and moving back, to 

determine the optimal operating options for a project and the corresponding project value. 

We apply the recursive relationship in Trigeorgis [51]. The project value at the 

beginning of t, given state s is newly observed while option during t — 1 was m, is 

£;w-maV/ (  - /(m -»o) f3  61  
z 1 + r V-o) 

with I{m —> z) = 0 for z = m 

where 
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5 = index of states 

i — index of options 

t = index of periods 

E* (m) = project value at the beginning of t, given state s is newly 

observed while option during t — 1 was m (assuming optimal 

future decisions) 

c; CO = net cash flow at the beginning of t, given state s is newly 

observed while operating in option i 

p = risk-neutral probability 

r = risk-free rate of return 

I(m —> i) = switching cost from option m to option i 

Let T denote when the backward process starts. At t = T, the above recursive 

relationship becomes 

max 
E } ( m ) =  (C*(0-/(m->0) (3-7) 

3.7 Numerical Example 

3.7.1 Input Data 

We now provide a numerical example with hypothetical data to illustrate the 

applicability of our model. In this example, there is a generation planning project for a gas 

turbine generation unit. The project has seven options and has a 3-period planning horizon. 
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The length of a period, At, is assumed to be one year. Furthermore, we assume that each 

activity (e.g., construction, expansion, etc.) will last one year for simplicity. 

The constructed capacity level is assumed to be 129 MW. The expanded capacity 

level is assumed to be 180 MW. Risk-free rate of return, r, is assumed to be 0.08. The 

instantaneous standard deviation of the rate of return on the completed gas turbine generation 

unit, cr, is assumed to be 0.6. By using equation (3.4) and equation (3.5), the multiple 

factors u and d for the underlying asset (the market value of the completed gas turbine 

generation unit) can be calculated as 1.8 and 0.6, respectively. Also, by using equation (3.3), 

risk-neutral probability, p, can be calculated as 0.4. 

i = 0, 1, 2, 3, 4, 5, 6 represent the activities on which options are based to defer the 

construction of the generation unit, to construct the generation unit, to operate at the 

constructed capacity level, to expand the constructed capacity level, to operate at the 

expanded capacity level, to temporarily shut down the generation unit from operating at the 

constructed capacity level, and to temporarily shut down the generation unit from operating 

at the expanded capacity level, respectively. We assume that both construction and 

expansion require one period to complete. 

Figures 3.3 represents the binomial lattices for i = 0,1, 2, 3, 4, 5, 6, respectively. In 

these lattices, net cash flows are expressed in $ millions. The first term in the parentheses 

represents the revenue generated in a period. The second term represents the costs incurred 

in a period. The difference of these two terms provides net cash flow in a period. 

Switching costs are expressed in $ millions. 1(0 —> 0,1) = 0 means that the switching 

costs from option 0 to 0 and from option 0 to 1 are equal to 0. The rests of switching costs 

are 1(0 -> 2,3,4,5,6) = oo, 7(1 -» 0,1,4,6) = co, 7(1 —> 2,3) = 0 , 7(1 ->• 5) = 0.5 , 
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0 

0 

0 

-32.3 

-32.3 

-32.3 

-32.3 

-32.3 

-32.3 

39.2 
(40.7,1.5) 

UD 

8.5 
(10,1.5) 

73.5 
(75,1.5) 

33.5 
(35,1.5) 

-1 
(0.5,1.5) 

1 = 0  i = 1 i = 2 

29.1 
(40.7,11.6) 

UD 

-1.6 
(10,11.6) 

63.4 
(75,11.6) 

23.4 
(35,11.6) 

-11.1 

(0.5,11.6) 

UD 

UD 

UD 

111.6 
(115,3.4) 

50.3 
(53.7,3.4) 

-2.6 
(0.8,3.4) 

UD 

i = 3 i = 4 i = 5 

UD 

UD 

UD 

i = 6 

Figure 3.3 Binomial lattices for i = 0, 1,2,3,4,5,6 

7(2 -» 0,1,4,6) = co, 7(2 2,3) = 0, 7(2 -» 5) = 0.5, 7(3 0,1,2,3,5) =oo, 7(3->4)=0, 

7(3 —• 6) = 1, 7(4 -» 0,1,2,3,5) = oo , 7(4 -• 4) = 0, 7(4 -> 6) = 1, 7(5 0,1,3,4,6) = °o, 

7(5 —» 2) = 0.5, 7(5->5) = 0, 7(6 ̂  0,1,2,3,5) = oo, 7(6 -• 4) = 1, 7(6 -> 6) = 0. 
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3.7.2 Solution 

We solve this 3-period generation planning problem by using backward dynamic 

programming. We first determine the optimal operating option and the corresponding project 

value for each state at t = 2 by using equation (3.7) (i.e., the index of periods starts at r = 0). 

However, at t — 2, we do not have knowledge of what would be the optimal operating options 

at t = 1. Therefore, for each state at t = 2, we need to consider each of the seven options as a 

possible entering option. Each possible entering option results in one binomial lattice with a 

set of project values and the optimal operating options. 

For each binomial lattice, at t = 1 and f = 0, we use equation (3.6) to determine the 

optimal operating options and the corresponding project values. We note that, at t = 0, option 

0 is the only possible entering option. After we solve t = 0, we trace forward to determine 

the optimal operating options for this 3-period generation planning project (details of this 

procedure are available on request). The optimal operating options are shown in Figure 3.4. 

The corresponding project value at t — 0 is $15.6 millions. 

4 

1 
4 
2 

5 

Figure 3.4 Optimal operating options for a 3-period generation planning project 
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We observe that, at the beginning of period 1, we should construct the 129 MW 

generation unit. If market conditions go up during period 1, then we should expand the 

constructed capacity level to 180 MW at the beginning of period 2. Whether or not market 

conditions go up during period 2, we should operate the generation unit at the expanded level 

at the beginning of period 3. On the other hand, if market conditions go down during period 

1, we should operate the generation unit at the constructed capacity level at the beginning of 

period 2. If market conditions go up during period 2, we should still operate the generation 

unit at the construted capacity level at the beginning of period 3. However, if market 

conditions go down during period 2, we should temporarily shut down the generation unit at 

the beginning of period 3. 

3.8 Concluding Remarks 

In this chapter, we employed a binomial options model to represent uncertain market 

conditions for a generation planning project. A contribution of this chapter is that we 

incorporated the strategic options at construction and operation stages that a utility may 

encounter in generation planning into a dynamic programming model. By solving the 

backward dynamic programming formulation, we determined the optimal sequential 

decisions over options for a generation planning project and the corresponding project 

values. 

In this chapter, we focused on strategic options only. For future research, it would be 

interesting to consider tactical options (e.g., daily decisions on production/non-production) as 

well. 
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CHAPTER 4. A MULTIPLE-OPTION MODEL WITH TWO CORRELATED 

PROJECTS FOR GENERATION PLANNING 

4.1 Introduction 

In Chapter 3, we studied the single-project multiple-option model. When there is 

more than one project and each project has one dominant option, but the projects are 

independent, then the model in Chapter 2 can be applied. On the other hand, if the projects 

are correlated, then each project can not be treated separately. This chapter is motivated by 

the inadequacy of the previous model when the projects are correlated. By correlation here, 

we mean the market values of the completed generation units are correlated (see e.g., [37], 

[57]). As a first step toward the development of a full model, in this chapter, we will 

consider the case of two correlated projects. 

Teisberg [49] analyzes the construction stage of a generation planning project using 

the real options approach. In her model, the construction for a generation unit can be 

proceeded, be delayed, or be abandoned. In practice, however, a utility may evaluate 

multiple correlated generation planning projects simultaneously. Few papers in the literature 

have addressed the issue o'f correlated projects based on real options. The only paper of 

which we are aware is for mutually exclusive R&D projects [15], which may not be an 

appropriate relationship for generation planning projects (e.g., generation projects need not 

be mutually exclusive). 

Mathematically, the fact that the values of the completed generation units are 

correlated can be modeled with correlated geometric Brownian motion (GBM) processes. 

Furthermore, in Chapter 3, we assume that a GBM process can be approximated by a 
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binomial lattice model. In this chapter, we construct a four-branch lattice model to 

approximate the combination of two correlated GBM processes. This approximation utilizes 

the correlation coefficient between the increments of two Brownian motion components (see 

e.g., [5], [22], [47]). 

Once the four-branch lattice model is constructed, we develop a mathematical 

expression for the value of an option. Since the expression is a function of the correlation 

coefficient, we then investigate the role of the correlation coefficient in the value of an option 

and decision making. 

For a utility with multiple correlated projects, the number of options at a decision 

point represents the enumerated combinations of the options for each project. For example, 

if a utility has 2 projects and each project has 6 options, then the total number of options is 

36. 

Since we will be sequentially making decisions over options, we will utilize a 

backward dynamic programming formulation. By maximizing the value of the investment 

that includes two projects during the planning horizon, we will determine the optimal 

sequential decisions over the options. We note that the backward dynamic programming 

formulation is subject to constraints such as budget and demand. 

This chapter is organized as follows. Section 4.2 presents the GBM processes that 

represent the movements of the market values of two completed generation units. Section 

4.3 shows how to approximate a GBM process by a binomial lattice model. Section 4.4 

shows how to approximate the combination of two correlated GBM processes by a four-

branch lattice model. Section 4.5 provides the values of options. Section 4.6 investigates the 

roles of the correlation coefficient. Section 4.7 provides the dynamic programming 
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formulation. An illustrative example is presented for managerial insights and economic 

implications in Section 4.8. Finally, concluding remarks are provided in Section 4.9. 

4.2 Geometric Brownian Motion 

Market conditions can be represented by the market value of completed generation 

units (see e.g., [48], [49]). For example, if the market value of completed generation units 

decreases dramatically in a period, then deferring maybe a good option in the next period. 

However, at the beginning of the planning horizon when the strategic planning is made for a 

generation planning project, the generation unit that the project represents does not exist yet. 

To estimate the market value of a completed generation unit at the beginning of the planning 

horizon, we may use a currently existing generation unit that has similar features such as 

capacity and construction costs (see e.g., [40], [48]). 

The market value of a completed generation unit is considered as the major source of 

uncertainties after the beginning of the planning horizon. Let Xi be the market value of the 

completed generation unit i. According to Teisberg [48], [49], it is reasonable to assume 

that X£ evolves stochastically over time according to a geometric Brownian motion (GBM) 

shown in the following equation. 

dX ;  = fj. iX idt-¥(r iX idz i  

where dzi is the differential of a standard Wiener process (with mean 0 and variance dt) for 

the completed generation unit i. [ii is the instantaneous expected rate of return on the 

completed generation unit i. <r(- is the instantaneous standard deviation of the rate of return 

on the completed generation unit i. 
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In this chapter, we consider a utility that has two interrelated generation planning 

projects. In other words, we assume that a utility has projects 1 and 2. dz, and </z2 have a 

correlation coefficient p. 

4.3 Binomial Lattice Model 

Instead of developing complicated differential equations that may not have analytic 

solutions, we approximate the continuous GBMs by discrete binomial lattice models. In a 

binomial lattice model, the change in the value of Xi (z = 1,2) has two possibilities: going up 

or going down. 

These two possible values are defined as the multiples of the value of X: in the 

previous period as shown in Figure 4.1 — a multiple u ;  for up (u l  >1) and a multiple d i  for 

down ( d i  < 1), and u id i  =1. The probabilities for up and down are pu and 1 - pu_, 

respectively. We note that the index of periods in Figure 4.1 represents the beginning of a 

period. 

Period 1 2 

Figure 4.1 Binomial lattice model 
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Approximating a GBM by a binomial lattice model requires two steps. The first step 

is to transform the GBM for XL to a process for In Xi. The second step is to find the 

suitable values for u i,d i, and pu by matching the binomial lattice model to the process for 

l n J f f .  

A. Transformation 

Let W t. = In X i, then, we keep terms in dW i  up to first order in dt as in equation (4.1). 

It can be shown that (dz,-)2 is equal to dt. We note that the only nonzero term in (dX{)2 is 

afXfdt. Therefore, we have 

B. Matching 

We match the expected value of the change in \aXt in the binomial lattice model to 

the expected value of d In X; in equation (4.2). Also, we match the variance of the change 

in In A", in the binomial lattice model to the variance of d In Xt. in equation (4.2). 

Let X .  ( t  +  A t )  be the value of X ;  at time t + At. In X ;  ( t  +  A t )  in the binomial 

lattice model can be expressed as 

= -7" (M.Xidt + <JiXidzi ) 
X-i 

(4.1) 

d \ o . X i =  ( / / , -  - a f  ) d t  +  c r i d z i  (4.2) 

In X  ;  ( t  + Af) = In X ;  ( t )  +  Y t  
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where 

fin u i  with probability pu 

' [In d i  with probability 1 — pu 

Therefore, the matching is as follows: 

} = Pu, Inzt,-+(!-/>„_) In < 

=  C " ,  -  \  o - f ) M  

vai(Y !) = E[Y i
2]-(E[Y i])1 

=  ( I n  u i  ) 2  A p U j  ( 1  -  p U j  )  =  a f  A t  
(4.3) 

1 1 Mi ~7°"'2 /— 
/V =%+%( )VÂ7 (4.4) 

The suitable values for undn and pu are solved as [32] 

1 
M i -

( 
2 2 

Ul=e*>m (4.5) 

d. = e~^ (4.6) 

We note that by replacing fj. t  by r, risk-free rate of return, pUi becomes risk-neutral 

probability. 

After binomial lattice models for individual generation units are constructed, we now 

turn to constructing a discrete lattice model for the market value of two completed generation 

units that has a correlation coefficient p . 
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4.4 Four-Branch Lattice Model 

The combination of two binomial lattices produces a four-branch lattice, namely, the 

branch with both Xx and X2 going up, the branch with Xx going up and X2 going down, 

the branch with X l  going down and X2 going up, and the branch with both Xx and X2 

going down. If p = 0, then the joint probability for each branch is equal to the product of 

marginal probabilities. 

If p  &  0, the adjustments a t ,  a 2 ,  a 3 ,  and a 4  are needed to be added to the products 

of marginal probabilities. In Figure 4.2, the probabihties for the branches from top to bottom 

a r e  t h e r e f o r e  p U l p „ t  + a l t  p U i  Ç L - p U t  )  +  a 2 ,  ( 1  - p U l ) p U l  + a 3 , a n d  ( l - p U t ) ( l - p U 2 )  +  a 4 ,  

respectively. 

tl j X | , 112 X 2 

U ^ X \  ,  ( I 2 X 2 

d  \ X  j  ,  U - y X  2 

d x X x ,  d 2 X 2  

Figure 4.2 Four-branch lattice model 

A. Transformation 

Similarly, two steps are required to determine the suitable values for the adjustments. 

The first step is to develop a process for \nX] + In X2. It can be shown that the process is 
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dQxiX l  4-ln^) = (//, +//-, — —a,~ ——<yl)dt 
2 2 (4.7) 

+^jo^+oY+^P^Ïô\dz3 

where <iz3 is the differential of a standard Wiener process which is different from dzx and 

dz2 (see e.g., [40]). 

B. Matching 

The second step is to find the suitable values for the adjustments by matching the 

four-branch lattice model to the process in equation (4.7). By employing the values 

obtained in equation (4.4), equation (4.5), and equation (4.6), the expected value of the 

change in In A"", +lnX2 in the four-branch lattice model is matched to the expected value of 

d(lnXl +In X2 ) in equation (4.7). Therefore, we only need to match the variance of the 

change in laXl +lnX2 in the four-branch lattice model to the variance of </(lnXx + hiX2) 

in equation (4.7). 

The matching is as follows: 

var(7, + Y2)= var(Z, ) + var(72 ) + 2 cov(7,, Yz  ) 

= af At + a\ At +- 2 per, a2 At 

Since var(Ft ) and var(Z2 ) are matched in equation (4.3), we only need to match the 

covariance term to determine the suitable values for the adjustments. ax, a2, az, and aA are 

calculated asp/4, —p/4, —p/4, and p/4, respectively. 

Market conditions determine which option should be exercised as well as the values 

of the options. After we construct a four-branch lattice model for the market value of two 

correlated generation units, in the next section, we present the values of the options in 

generation planning. 
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4.5 Values of Options 

A. Call options 

The options to construct a generation unit and to expand the constructed capacity 

level can be regarded as call options because the utility has the right, but not the obligation to 

make investment expenditures and receive the assets. For the option to construct the 

generation unit, the utility will exercise this option only if the market value of the completed 

generation unit exceeds the construction costs. For the option to expand the constructed 

capacity level, the utility will exercise this option only if the extra revenue after the 

expansion exceeds the expansion cost. 

Suppose the utility has two existing generation units. Let us consider the option to 

expand the constructed capacity level of generation unit 1 at the beginning of period 2. Let 

Kx denote the expansion cost at the beginning of period 1. Let cx denote the extra 

percentage of the market value of the generation unit 1 that the expansion generates. The 

value of the option at the beginning of period 2 is shown in Figure 4.3. 

KtU2 = max(c1«1 Xx -^,(1 + rAr),0) 

VUidj  = max(cxuxXx —Kx (l + rAf),0) 

VdiUi  = max(c, dxXx~Kx( 1 + rAz),0) 

V i idz  = max(c,d x X x  - K l ( l  +  r A t ) , 0 )  

Figure 4.3 Value of the option to expand generation unit 1 
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In Figure 4.3, Vs represent the values of the option to expand the constructed capacity level 

of generation unit 1 under specific market conditions and At represents the length of a 

period. 

Evaluating other call options requires changes in Vs. For example, for the option to 

expand the constructed capacity levels of two generation units, K ^ is equal to 

max(c lu lX l  — AT, (1 + rAl) + c2u2X2 —K2(l + rAt),Q). 

Then, the value of any option at the beginning of period 1 with respect to risk-neutral 

probabilities, V0, is equal to 

Vo = (K,U 2  (PU l  Pu 2  +-J)  +  v
U ld 2 ( jPu,Pd 2  —%) 

4 ^ (4.8) 

+  Vd,u 2  (Pd,  Pu 2  + Vd xd 2  (Pd x  Pd 2  
+  ~)) / 1  +  r  

where pdx =1 pdi  =1 -pUi. 

B. Put options 

The options to reduce the constructed capacity level of a generation unit can be 

considered as put options because the utility has the right, but not the obligation to give up 

some generation assets (e.g., sell some wind turbines for a wind generation unit) and save 

some generation costs. Similarly, a utility will exercise this option only if the money saved 

from reducing the capacity exceeds the amount of foregone revenue due to the capacity 

reduction. 

For the option to reduce the constructed capacity level of generation unit 1 at the 

beginning of period 2, VUtUj is equal to max(Gl (1 + rAt) - cluxXx ,0), where G, is the 
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generation costs saved from the capacity reduction at the beginning of period 1 and c, is the 

reduced percentage of the market value of generation unit 1. 

4.6 Role of Correlation Coefficient 

In this section, we examine the role of correlation coefficient, p, in decision making 

(i.e., the decision to exercise an option at the beginning of period 1 or 2) and in the values of 

options in a two-period model. 

The numerator of equation (4.8) can be expressed as 

CK lu 1Pu lPu z  + Vu ld zPu lPd 2  + Vd xu 2Pd lPu 2  

+ Fd,d 2Pd,Pd 2 ) - i~j(Vu,u 2  
+  Vd,d 2  ~K,d 2  ~Vd tU 2 )  

This implies the following conditions: 

Condition 1 : If + Vdidi = + VdiUi, 

then p does not have role in the value of the option. 

Condition 2: If Vu^ + > Vu^ + Vd^ , 

then the increase in the value of p will increase the value of the option. 

Condition 3 : If VU i U i  + < Vu^ + V d [ t t 2 ,  

then the increase in the value of p will decrease the value of the option. 

If an option involves activities for only one generation unit, then condition 1 is 

satisfied. In other words, p does not have role in the value of the option. Moreover, in this 

case, p does not have role in decision making. 
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If an option involves activities for two generation units, then one of conditions 1, 2, 

and 3 is satisfied. In other words, p may have role in the value of the option. Now, if the 

option can be exercised at the beginning of period 1 only or 2 only, then p does not have a 

role in decision making. All these observation can be verified mathematically. For example, 

if the option can be exercised either at the beginning of period 1 or at the beginning of period 

2, then p will have a role in decision making if condition 2 or condition 3 is satisfied. 

4.6.1 Numerical Example 

In this example, we consider an option to reduce the constructed capacity levels of 

two generation units. This option can be exercised either at the beginning of period 1 or at 

the beginning of period 2. We want to determine when to exercise this option and the 

corresponding values of the option. 

The length of a period is 3 months. The hypothetical data are as follows: 

r = 6% (annual), //, = 30% (annual), <x, = 60% (annual), /z2 = 40% (annual), 

cr2 = 40% (annual), cx =c2 =10%, Gx — $70 million, Xx = $500million, G2 =$90 million, 

X 2 = $800 million. 

Then, we use equation (4.4), equation (4.5), and equation (4.6) to obtain pUi = 0.45, 

ux =1.35, dx =0.74 pUi =0.4875, u2 =1.22, d2 =0.82. 

For the option that can be exercised at the beginning of period 2, the values at the 

b e g i n n i n g  o f  p e r i o d  2  a r e  c a l c u l a t e d  a s  f o l l o w s :  V U i U j  = 0 ,  V u ^  = 2 9 . 3 ,  V = 2 7 . 8 ,  

Vdld2 =59.8 . Therefore, the value of this option at the beginning of period 1 with respect to 

risk-neutral probabilities is 
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V0 = (29.3 * (0.45 * 0.5125 — p / 4) 

+ 27.8 *(0.55* 0.4875 -p/4) 

+ 59.8 * (0.55 * 0.5125 + p / 4)) /1 + r 

= 30.61 + 0.665p 

For the option that can be exercised at the beginning of period 1, the value at the 

beginning of period 1 is max(G, —clXl + G2 -c2X2,0) = 30. We compare 30.61 + 0.665 p 

with 30. If p < -0.917, then we should exercise the option at the beginning of period 1 and 

the value of the option is $30 million. If p > -0.917, then we should exercise the option at 

the beginning of period 2 and the value of the option is $30.61 + 0.665 p million. 

4.7 Dynamic Programming 

Because the selection of an option in one period will affect the selection of options in 

subsequent periods, the use of backward dynamic programming is necessary. We solve the 

generation planning problem recursively, starting from the end and moving back to 

determine the optimal sequential decisions for a utility and the corresponding value of the 

investment. 

Corresponding to the four-branch lattice for the market values of the completed 

generation units, each option has a four-branch lattice representing net cash flows that the 

option would generate if it is exercised. Each net cash flow represents the payoff under a 

specific market condition in a specific period. For some options, the net cash flows are set at 

negative infinity in some periods. For example, if both the construction and expansion of a 

generation planning project require one period to complete, then for that project the earliest 
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feasible net cash flows for the option to operate at the expanded capacity level occur in 

period 3. Therefore, the net cash flows are set at negative infinity in periods 1 and 2. 

The value of the investment at the beginning of t, given state s is newly observed 

while option during t-1 was m, can be obtained from the expected value of the investment at 

the beginning of t+\ as follows: 

>o,  
z 1 + r 

subject to 

I(m —> z) = 0 for i — m 

where 

z e F; 

s = index of states (the changes in market value of the complete projects, i.e., 

(up, up), (up, down), (down, up), (down, down)) 

z = index of options 

t = index of periods, t= 1,..., T-l, where T is the last period under planning 

Vr
s (m) = value of the investment at the beginning of t, given state s is newly 

observed while operating in option m (assume optimal future decisions) 

Cs
t (z) = net cash flow at the beginning of t, given state s is newly observed while 

operating in option z 

E[Vl+l (/)] = expected value of V[+l (z) with respect to risk-neutral probabilities 

V[+1 (z) = value of the investment at the beginning of Z+l while operating in option z (a 

random variable) 
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r = risk-free rate of return in a period 

I{m —> i) = switching cost from option m to option i 

Ff = set of feasible options at the beginning of t, given state s is newly observed 

For the case of two correlated generation planning projects (i.e., a four-branch lattice 

model), the probability distribution for V[+1 (z) is as follows: 

Kl\"2 (0 with probability pUipU2 + ̂  

Kf (0 with probability pUx pdi - -Ç 
^,(0= ^ 

K?"1 (0 with probability pd[ pUi - — 

(0 with probability pd% pd^ + ̂  

We note that the above probabihties are risk-neutral probabihties. With respect to the 

risk-neutral probabilities, we discount E[V[+l (z)] at the risk-free rate of return. 

Switching from an option to another option requires a switching cost. Some switches 

are not possible. For example, switching from operating at a constructed capacity level to 

deferring construction for the same project is not possible. In this case, the switching cost is 

assumed to be infinite. 

We note that each option, given a state and a period, should be checked for feasibility. 

That is, there may be various constraints (such as financial or demand constraints) that make 

it impossible to exercise an option. For example, a utility may not have enough budget to 

expand two generation units' capacity at the same time. Therefore, such an option is not 

feasible to switch to. Similarly, a utility may need a certain amount of capacity to serve 

customers at a specific time. Therefore, the option to defer the construction of two projects 

may not be feasible at that time point. 
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With the switching costs and constraints, the number of the feasible options that 

should be evaluated over the planning horizon will be greatly reduced. 

Let T denote the last period under planning. The value of the investment at the 

beginning of T, given state s is newly observed while option during T-1 was m, is as follows: 

max r/(m)= . (C;(z)-/(m->0) 
i 

subject to 

I ( m  —> z) = 0 for i  =  m  

i e Fjf 

4.8 Numerical Example 

4.8.1 Input Data 

We now provide a numerical example with hypothetical data to illustrate the main 

features of our model. In this example, there are two generation planning projects (1 and 2). 

Project 1 represents a potential wind power generation unit (combination of wind turbines). 

Project 2 represents a potential gas turbine generation unit. Each project has the options to 

defer the construction of the generation unit, to construct the generation unit, to operate at the 

constructed capacity level, to expand the constructed capacity level, to operate at the 

expanded capacity level, to sell the constructed generation unit at its salvage value, and to 

sell the expanded generation unit at its salvage value. 

The planning horizon is 3 periods and each period is one year. The 3-period four-

branch lattice for the market values of the two completed generation units is shown in Figure 

4.4. In Figure 4.4, the index of periods represents the beginning of a period. We assume that 
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both construction and expansion of both generation units require one period to complete. 

Risk-free rate of return, r, is assumed to be 0.06. The data for the generation units that the 

two generation planning projects represent is listed in Table 4.1. The correlation coefficient 

between the market values of the two completed generation units is assumed to be -0.5. 

From Table 4.1, we can calculate the risk-neutral probabilities of the binomial lattice 

models for individual projects as pu< =0.6, pdi =0.4, pu^ = 0.475, pd^ =0.525. Then, 

risk-neutral probabilities of the four-branch lattice model for two correlated projects can be 

calculated as 0.16, 0.44, 0.315, and 0.085 for the branch from top to bottom for each node in 

Figure 4.4, respectively. 

U f X j ,  M 2 X 2 

u ] X x , u 2 d 2 X 2  

U \ X  x ,  u 2 X 2  

ux X |, d2X 2 W j  d y X  x ,  u  2  d 2  X  2  1 ,  M 2  2  

u l d l X l , d ; X 2  

d ] X x , u 2 d 2 X 2  

Period 1 2 3 

Figure 4.4 3-period four-branch lattice 
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Table 4.1 Project data 

Project 1 Project 2 
Annual rate of return on the 
completed unit 

0.2 0.3 

Annual standard deviation of the 
completed unit 

0.2 0.4 

Constructed capacity (MW) 140 150 
Capacity after expansion (MW) 180 200 

As stated previously, each project has 7 options at each decision time point (i.e., 

node). Since there are two projects, at a node, a combination pair of options can be formed 

with one option for each project. Therefore, the total number of combination options at each 

node is 49. For each pair of combination options, we have a 3-period 4-branch lattice 

depicted in Figure 4.4. We note that at each node, we are newly informed of the specific 

market values of the generation units. Given the specific market values, we can obtain the 

net cash flow ( C' (z) ). Since there are 14 nodes (1+4+9) for 49 combination pairs of options, 

we calculate 14*49=686 C/ (z) 's. The complete numerical data are available upon request. 

At t = 3, we assume that there are capacity constraints requiring 350 MW of capacity 

for the first 8 nodes and 345 MW of capacity for the last node (dfXx,d2X2) in Figure 4.4. 

At t = 2, we assume that there are capacity constraints requiring 200 MW of capacity for the 

first 3 nodes and 180 MW of capacity for the last node (dlXl,d2X2 ). At t = 1, we assume 

that there are no constraints. 

In this example, some of switches are logically impossible. For example, for the 

same project, we can not switch from deferring to operating, from deferring to expanding, 

and from deferring to selling. For impossible switches, the switch costs are assumed to be 

infinite. In this example, all the switching costs for possible switches are assumed to be zero. 
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4.8.2 Solution 

At all nodes at t = 3, the only option that satisfies the capacity constraints is the 

option to operate both units at the expanded capacity level. At all nodes at t = 2, there are 

four options satisfying the capacity constraints. They are the option to operate both units at 

the constructed capacity level, the option to operate unit 1 at the constructed capacity and 

expand unit 2, the option to expand unit 1 and operate unit 2 at the constructed capacity level, 

and expand both units. Since at t = 2 all the feasible options are in operating conditions, the 

utility must construct both units at t = 1. 

After we examine constraints and obtain feasible options for all nodes, we examine 

the switching costs. There are four feasible options atr = 2 and one feasible option at t — 3. 

However, at t = 2 the option to expand both units is the only option that does not incur 

i n f i n i t e  s w i t c h i n g  c o s t .  T h e r e f o r e ,  t h e  o p t i o n  t o  e x p a n d  b o t h  u n i t s  i s  t h e  o p t i m a l  o p t i o n  a t z  =  

2. 

In summary, the optimal options are to construct both units at t = 1, to expand both 

units at t = 2, and to operate both units at the expanded capacity level at t = 3. The 

corresponding optimal investment value at the beginning of decision time point 1 (with the 

assumption that generation units 1 and 2 are deferred from decision time point 0) is 

calculated as $ 36.5 millions. 

To reduce the number of options that should be considered in dynamic programming, 

we propose a two-step procedure via a numerical example. First, we eliminate the options 

that violate the constraints. Secondly, starting from the last period, we ignore the options that 

incur infinite switching costs. Via this procedure, the size of the dynamic programming can 

be greatly reduced. 
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4.9 Concluding Remarks 

In this chapter, we developed a generation planning model for two correlated projects 

based on the real options theory. Specifically, first, we constructed a four-branch lattice 

model that approximates the combination of two correlated GBM processes for two 

correlated projects. Then, we investigated the roles of the correlation coefficient in both the 

value of an option and decision making. Finally, by maximizing the value of investment that 

includes two correlated projects, we showed how the optimal sequential decisions over the 

options can be determined. 

The contributions of this chapter are as follows. First, we constructed a four-branch 

lattice model that explicitly incorporates the correlation coefficient of two projects. Second, 

we showed that the value of the correlation coefficient may affect both decision making and 

the value of an option. 

As an interesting future research, we plan to study intuitive reasons for the role (or the 

lack of the role) of p in the value of an option and decision making. 
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CHAPTER 5. A MULTIPLE-OPTION MODEL WITH MULTIPLE CORRELATED 

PROJECTS FOR GENERATION PLANNING 

5.1 Introduction 

In Chapter 4, for two correlated projects, we designed and analyzed a four-branch 

lattice model based on the real options approach. In this chapter, we extend the model in 

Chapter 4 by considering a general case of n (n > 2) correlated projects. 

In order to develop a model for multiple correlated projects, we first extend the four-

branch lattice model for two correlated projects to an eight-branch lattice model for three 

correlated projects. Namely, project 1, 2, and 3. These three correlated projects will have 

the following sub-relationship, i.e., the correlation between projects 1 and 2, the correlation 

between projects 2 and 3, and the correlation between projects 1 and 3. Each of these 

correlations can be represented by a four-branch lattice. With three projects, we will need an 

eight-branch lattice (representing the up and down of the market value of each project). As 

for the risk-neutral probabilities of the eight-branch lattice model, we obtain them by solving 

a system of equations generated by the risk-neutral probabilities of three four-branch lattice 

models. 

Once our lattice model for multiple correlated projects is constructed, we proceed to 

compare our model with other lattice models. Even though there are very few papers for 

correlated capital investment projects (see e.g., [15]), there do exist studies on how correlated 

geometric Brownian motion processes are approximated by discrete lattices (see e.g., [12], 

[18], [25]). 
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Next, we investigate the roles of correlation coefficients by using a two-period lattice 

model. For this investigation, we first examine the case of three correlated projects. Next, 

we examine the general case of n (n > 2) correlated projects. Based on explicit sets of 

conditions, the roles of correlation coefficients are presented. 

Finally, we provide a dynamic programming model for sequential decision making 

purposes. Via an example with three correlated projects, we illustrate how the optimal 

decisions over options for multiple correlated projects can be determined. 

The organization of this chapter is as follows. In Section 5.2, we provide an eight-

branch lattice model for three correlated projects. In Section 5.3, we extend the eight-branch 

lattice to a lattice model for multiple correlated projects. Section 5.4 compares our 

approximation model with other approximation models. Section 5.5 investigates the roles of 

correlation coefficients. Section 5.6 provides a dynamic programming model for sequential 

decision making. This will be followed by an illustrative example with three correlated 

projects in Section 5.7. Finally, concluding remarks and comments on future research are 

provided in Section 5.8. 

5.2 Lattice Model for Three Correlated Projects 

A utility may consider strategic options for multiple correlated projects where each 

project represents a power plant. The market value of each power plant is assumed to evolve 

stochastically according to a geometric Brownian motion (GBM) process and is correlated to 

the market values of other power plants. Thus, there are multiple correlated GBM processes 

for the market values of power plants, which are considered as the underlying assets for the 

strategic options for multiple correlated projects. 
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To estimate the values of such options, we construct lattice models by matching the 

key parameters such as means, variances, and covariances to the correlated GBM processes. 

Our first attempt is to develop a lattice model for three correlated projects. Then, we will 

generalize this lattice for n correlated projects (n > 2). 

Let A",, (i = 1,2,3 ) be the market value of power plant i and it evolves according to: 

dX i  = fiiX^dt + a iX idz i  

where dzl and dz2 has correlation coefficient pl2, dzx and dzz has correlation coefficient 

y013, dz2 and dzz has correlation coefficient . 

One GBM process is approximated by a binomial lattice and the combination of two 

GBM processes is approximated by a four-branch lattice. Similarly, the combination of three 

GBM processes can be approximated by an eight-branch lattice as shown in Figure 5.1. For 

example, the first branch in Figure 5.1 represents that all of Xx, X2, X3 move up. Let 

denote the risk-neutral probability for the up-move in a binomial lattice for underlying asset 

i. If three GBM processes are not correlated, then the joint probability for each branch in 

Figure 5.1 is equal to the product of three marginal probabilities. For example, the joint 

3 
probability for the first branch in Figure 5.1 is therefore equal to ]^[ pu . Otherwise, an 

i=i 

adjustment, a k ,  k  = 1,...,8, is needed to be added to the product of three marginal 

probabilities in branch k. For example, the joint probability for the first branch in Figure 5.1 

3 
is therefore equal to Pu t  

+ a \  • Now, we need to determine the values of ak s. 
£=I 
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M J , M2 X 2 jU-^JC 2 

Figure 5.1 Eight-branch lattice for three underlying assets 

u ^ X  J ^u2X 2, d^X 3 

u ^ X ^  ,  d 2 X 2  y  t i j X ~  

, d2X2, d^X^ 

d \  X i ̂ ti2 X2, ti~ X j 

d ^ X ^ , u2X2, d^X^ 

d ^ X  i ,  d 2 X  2 ,  xL-^X 

d\X l,d1X l,d- iX- i  

A binomial lattice for one underlying asset is constructed by matching the mean and 

the variance of the lattice to the mean and the variance of the GBM process. Then, by using 

two matched binomial lattices for two individual underlying assets, a four-branch lattice for 

two correlated underlying assets is constructed by matching the covariance of the four-branch 

lattice to the covariance of the combination of the two GBM processes. For example, 

observe that the bottom branch of Figure 5.1 (^dxXY,d2X2,d^X3 ) is from the combination of 

the bottom branches of the three four-branch lattices in Figure 5.2. 
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U\X\ ,11^X2 U \ X  i  , u 3 X 3  

w ^ X  i ,  d 3 X 3  

d j X  i  , u 3 X 3  

diX t  ,d3X3 d l X l , d 2 X 2  

u 2 X 2 ,  u 3 X 3  

Figure 5.2 Four-branch lattices for three pairs of correlated underlying assets 

The probabilities for the branches from top to bottom for the pair of underlying assets 

The adjustments as well as the probabilities for the branches in Figure 5.1 can be 

determined by using the four-branch lattices in Figure 5.2. Since key parameters such as 

means, variances, and covariances have already been matched, the eight-branch lattice based 

on four-branch lattices will automatically match the GBM processes for each individual 

underlying asset, as well as the combination of two correlated GBM processes for each pair 

of underlying assets. 

Let us consider the pair of underlying assets 1 and 2. The sum of the probabilities 

associated with the first two branches (i.e., ulXl,u2X2,u3X3 and u,Xl,u2X2,d3X3) in 

i.jare Pu Puj  pUjpdj  pdjpUj pdjpdj  +^~, respectively. 
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Figure 5.1 should be equal to the probability associated with the first branch { u x X x  , u 2 X 2 )  of 

the first lattice in Figure 5.2. Mathematically, 

Pu tPu2Pu, + Pu lPu2Pt, +a2 =pUxpUi +^-

This imphes ax + a2 = -. By the same logic, the following system of equations can be 

derived to determine the values of ak s. 

ai + a 2  =~ 

P\2 
4 

Pa 
4 

Pi 2 
4 

P23 
4 

a 2 + a 6  = - ^ f ~  

a3 +a4 = 

a5 +a6 =• 

a7 +ag 

ax +a5 = 

a z  + a 7  = •  

a4 +ai 

ax +a3 

a 2  +  a 4  = -

P 23 

4 

P23 

4 

Pl3 

4 

Pl3 
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a5 +  û 7  = -P13 

a « + a -=T  

This system of equations has rank 7 and there are 8 unknowns. Thus theoretically, 

the number of solutions is infinite. However, we can consider the following symmetric 

relations: ax = a8, a2 = <z7, a3 = a6 , a4 = as. i.e., the adjustments where market value 

directions of each project are opposite are the same. Under this symmetric relations, the 12 

equations with 8 unknowns are reduced to the following 6 equations and 4 unknowns. 

a t +a 2  

a '+ a > 

= 2+ = ,= - ^ -

a, +a3 = 
1 3 4 

a 2 + a 4 = -^ -

Here the rank can be verified to be 4 and the following solution is unique: 

_ Pl2 P23 Pl3 _ Pl2 ~ P23 ~ Pl3 _ ~ Pl2 ~ P23 + Pl3 _ ~ Pl2 + P23 ~ Pl3 

1 8 ' 2 8 ' 3 8 ' 4 8 
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~ Pi2 + P23 ~ P13 „ _ ~ P\1 -  Pn +  P13 _ _ P\1 ~ Pn~ P13 

5 8 ' 6 8 ' 7 8 

_ P12 P23 P13 
8 8 

We note that the only lattices that need to be appro ximated to the GBM processes are 

binomial lattices for individual underlying assets and four-branch lattices for two correlated 

underlying assets. After these lattices are constructed, an eight-branch lattice for three 

correlated underlying assets can be constructed by solving a system of equations based on 

four-branch lattices. Similarly, a sixteen-branch lattice foir four correlated underlying assets 

can be constructed by solving a system of equations based on eight-branch lattices. 

5.3 Lattice Model for N Correlated Projects 

By the symmetry of the expressions obtained for four-branch and eight-branch 

lattices, the probability associated with branch k of the lattice for n correlated underlying 

assets is 

Pk — nPs,(.k) + 0„ ̂ ^^ry-WPiJ ^ — 1'—'2 
i=l -6 1=1 j=2 

><j 

where 

<?,(&) = 
u- if asset i  has an up - move in branch k 

d j if  asset i  has a down - move in branch k 

1 if both asset i  and asset j  move in same direction in branch k 

-1 if both asset i  and asset j  move in opposite direction in branch k 
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5.4 Comparisons with Other Approximation Models 

Our lattice model for n correlated underlying assets is constructed based on binomial 

lattice models for individual underlying assets. A binomial lattice model is constructed by 

choosing the suitable values for the key parameters in the lattice (Cox, Ross, and Rubinstein 

[17]). Specifically, suitable values for three unknowns are determined by solving a system of 

three equations. The three unknowns are the probability associated with an up-move, a 

multiple for an up-move, and a multiple for a down-move. The three equations are the 

equation to match the mean of the lattice to the mean of the GBM process, the equation to 

match the variance of the lattice to the variance of the GBM process, and the equation that 

imposes the assumption that the product of the two multiples is equal to one. 

However, Cox, Ross, and Rubinstein approach (CRR) is not the only approach of 

constructing a binomial lattice. Instead of imposing the assumption that the product of the 

two multiples is equal to one, Hull [23] fixes the probability at 0.5. By solving two equations 

(R )A/+FF V AI 
for two unknowns, Hull determines the multiple for an up-move as u = e 2 and the 

( r ) A/-er V A/ 

multiple for a down-move as d = e 2  . Hull claims that the advantage of his model 

over the CRR approach is that the probabilities are always 0.5. In contrast, the CRR 

approach may give negative probabilities if the length of a period ( AT ) is sufficiently large. 

Furthermore, Hull claims the disadvantage of his model is that it is not easy to determine the 

hedging strategies because the value of the underlying asset does not recombine after two 

periods. 

The CRR approach has been extended to four-branch lattices for two underlying 

assets by Boyle et al. [13] and Wang and Min [57]. Boyle et al. equate the characteristic 
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function of the four-branch lattice with the characteristic function of the combination of two 

GBM processes. 

The difference between Boyle's four-branch model and Wang and Min's four-branch 

model is in risk-neutral probabilities. In Boyle's model, the probabilities (e.g., the 

probability of (up, up)) keep terms up to VÂ7. In Wang and Min's model, the probabilities 

keep terms up to At (i.e., this can be observed by expanding the mathematical expressions). 

5.5 Roles of Correlation Coefficients 

Let us consider an option for a utility with three correlated projects in a two-period 

model. In this model, the evolution of the three underlying assets is represented by an eight-

branch lattice. Suppose the option can be exercised at the beginning of period 2. Let VUlUlUj 

denote the value of the option at the beginning of period 2 under the market condition that all 

three underlying assets just moved up. For example, if the option is to expand the existing 

capacity levels of power plants 1, 2, and 3, then 

K,u2u,  = max(£ {c iu iX i  - K ;  (1 + r)), 0) 
m 

where 

c i  = extra percentage of the market value of power plant i  that the expansion 

generates 

u ;  = multiple for an up-move for power plant i  

K t  = expansion cost for power plant i  at the beginning of period 1 

r = risk-free rate of return in a period 
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Then, the value of the option that can be exercised at the beginning of period 2 at the 

beginning of period 1 with respect to risk-neutral probabilities, V0 , is equal to: 

r. + P n + P; '+ P»)+K^(p.,p.. ,p<, + 

+ K,<„(P.,P*,P„, + ~P , 1 + P"~P 2 1)+V„M(P„,P J ,P<, + ~p"'^+ p°) 

+v ,„M,P . ,P . ,  +- p " - p " + p " )+ r^ p , p „ i p , t  

+ + + +£a±^i±Ai)) 

To determine the roles of the correlation coefficients in the value of the option, we 

calculate the partial derivatives of V0 with respect to pl2, Aa, ^ P-n 38 follows: 

dV0  1 
(^3 ^"["2^3 ^>"2^3 ^didluZ ^ ^trf2<*3 ̂  

fiz _ iz + p- _ _ ?/ +17 —y-+v ) Vr utu2w3 UtU2rf3 "l^2U3 Ut</2<f3 ^l"2«3 ^lw2^3 A^2*3 ^l^2^3 ' 

8(1 + r) 

1 

3 8(1+ r) 

1 1 (^3 ^2*3 "*™ ^di"ïu-i ^f[U2^3 ^l^2^3 ^ 5/^23 8(1 + r) 

These imply the following conditions: 

Condition 1 : If P^,„, + ̂  ^ + ' 

then p12 has no role in the value of the option. 

Condition 2: If + Vdiu2u, + , 

then the increase in the value of £>12 will increase the value of the option. 

Condition 3 : If + VdM < + Vd^ + , 

then the increase in the value of pn  will decrease the value of the option. 
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Condition 4: If Vm + Vu^ + + v^3, 

then p l 3  has no role in the value of the option. 

Condition 5: If Vm + Vu^ + VdiUjdj + Vd^ > Vu^ + + Vd^ , 

then the increase in the value of p l 3  will increase the value of the option. 

Condition 6: If Vm + Vu^ + < Vu^ + + Vd^ + , 

then the increase in the value of p l 3  will decrease the value of the option. 

Condition 7 : If Vm + Vu^ + Vd^ + = Vu^ + , 

then p23 has no role in the value of the option. 

Condition 8: If Vm + + Vd^ + Vd^ > + Vu^ + Vd^ + , 

then the increase in the value of p^ will increase the value of the option. 

Condition 9: If Vm + Vu^ + Vd^ + Vdidjdj < Vu^ + Vu^ + Vd^ + Vd^, 

then the increase in the value of p^ will decrease the value of the option. 

If an option involves activities for only one power plant, then conditions 1, 4, and 7 

are satisfied. In other words, pxl, pl3, and p^ have no roles in the value of the option. If 

an option involves activities for two power plants, for example, power plants 1 and 2, then 

pl3 and P23 have no roles in the value of the option (see conditions 4 and 7). On the other 

hand, if an option involves activities for all three power plants, then p l 2 ,  p l 3 , and may 

have roles in the value of the option (due to conditions 2, 3, 5, 6, 8, 9). 

Now, let us consider an option for a utility with n correlated projects over a period 

where the evolution of the n underlying assets is represented by a 2" -branch lattice. Then, 
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the number of correlation coefficients is ^n(n —1) . Let Vk ,  k = 1,2,3,—,2", denote the value 

of the option at the beginning of period 2 under the market condition k (branch k). For 

underlying assets f and g, pfg has the following conditions: 

Condition 1 : If , then p f g  has no role in the value 
kz f ,g move in same direction kz f ,g move in opposite direction 

of the option. 

Condition 2: If ^ Vk  > ^ Vk  , then the increase in the value of 
kr. f,g move in same direction kz f ,g move in opposite direction 

p f g  will increase the value of the option. 

Condition 3: If F* < ^Vk , then the increase in the value of 
k: f ,g move in same direction k: f ,g move in opposite direction 

p f g  will decrease the value of the option. 

If an option involves activities for only one power plant, then no correlation 

coefficient has any role in the value of the option. If an option involves activities for only 

two power plants (i.e.,/"and g), then pfg may have a role in the value of the option. 

Similarly, if an option involves activities for n power plants, then the corresponding 

correlation coefficients of the n power plants may have a role in the value of the options. 

5.6 Sequential Strategic Options 

Thus far, we investigated the role of correlation coefficients. In this section, we will 

utilize a dynamic programming model to formulate sequential decision making processes. 

Specifically, we assume that strategic options can only be exercised at the beginning 

of a period, and there are n correlated projects. It can be shown that the number of market 
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conditions (states) in a multiple-period lattice at the beginning of period t  is t" where n is the 

number of projects. For example, if there are three projects, then the number of states at the 

beginning of period 1 is 1, the number of states at the beginning of period 2 is 8, and the 

number of states at the beginning of period 3 is 27. Figure 5.3 shows the evolution of three 

underlying assets in a three-period eight-branch lattice. The values of three underlying assets 

at the beginning of period 3 denoted by numbers in Figure 5.3 are listed in Table 5.1. 

For a utility with multiple projects where each project has multiple options, the 

number of options at a decision point represents the enumerated combinations of the options 

for each project. For example, if a utility has 3 projects and each project has 4 options, then 

the total number of options are 64. 

Since options are the derivative assets of underlying assets, each option is associated 

with a lattice that has the same number of states and the same probabilities for states as the 

lattice for underlying assets. Each option's lattice represents net cash flows that the option 

would generate if it is exercised. Each net cash flow represents the payoff under a specific 

market condition in a specific period. 

Because the selection of an option in a period will affect the selection of options in 

subsequent periods, we apply backward dynamic programming to determine the optimal 

strategic options over the planning horizon. We solve this problem recursively, starting from 

the end and moving back to determine the optimal strategic options for a utility and the 

corresponding value of the investment. We note that the value of investment represents the 

sum of accumulated values of options for each project. 

The value of the investment at the beginning of t ,  given state s is newly observed 

while option during t-1 was m, can be obtained from the sum of net cash flow ( C\ (z) ), the 
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discounted expected value of the investment at the beginning of t+\ ( ), and the 
1-f-r 

negative value of the switching cost {I(m —> z) ) as follows: 

V/(m) = ̂  (C; (z) + - I(m  z)) (5.1) 
z 1 + r 

s.t. 

I(m -> z) = 0 for i  = m 

zeF /  

where 

s = index of states, 5=1,.. . , tn  

t  = index of periods, Z=l,. . . ,T-1, where T is the last period under planning 

z = index of options 

V* (m) = value of the investment at the beginning of t ,  given state s is newly 

observed while option during t-1 was m 

C; (z) = net cash flow at the beginning of t, given state s is newly observed while 

operating in option i  

E[Vr+l (z)] = expected value of Vt+1 (z) with respect to risk-neutral probabilities 

r = risk-free rate of return in a period 

/(ZM —> z) = switching cost from option m to option z 

F t
s  ~ set of feasible options at the beginning of t ,  given state 5 is newly 

observed 
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J , ll-yX2 J 

U ^ X j, W 2 X 2, d-^X-^ 

Mj ATj , ̂ 2 ̂ 2. ' ̂3 "^3 

ixxX j, d2X 2 > d3  X 2 

• d^Xy ,11^X2 yU^Xj 

d\X\ j U2X2 >d3X-

d\X\ ,d zX z ,u3X3  

Figure 5.3 Evolution of three underlying assets 
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Table 5.1 Values of underlying assets in period 3 

1 15 uxdxXx ,U2d2X2 ,d* X3  

2 Mj Xx  , Z<2 -^2 ' ̂3 ̂ 3 -^3 16 uxdxXx ,dïX2 ,u3X3  

3 w2^,, u\X2 ,d\X3  17 uxdxXx ,d\X 2 ,u3d3X3  

4 j  -^^2 5 ^3  ̂ 3 18 uxdxXx ,d\X2 ,d]X3  

5 u\Xx ,d\X2 ,u\X3  19 dxXx ,u\X2 ,u\X3  

6 ux  Xj jXi^d^X^,ti3d3X3  20 df Xx ,u2X2 ,u3d3X3  

7 ux  Xx ,u2X2iU3d3X3  21 d;Xx ,u\X2 ,d]X3  

8 22 dx  X l ,u2d2X2 ,u3X3  

9 u\Xx ,u2d2X2 ,d]X3  23 dx  Xx ,u2d2X2 ,u3d3X3  

10 uxdxXj, #2 -^2 '  ̂ 3 -^3 24 

11 l&idiX i , W2 -^*2 » ^3^3*^3 25 ^^,,^4^2^3 ̂ 3 
12 u\d\X\,u2X2 ,d3  X3  26 ^%,,^%2,«3^3^3 
13 uxdxXx ,u2d2X2 ,^3 -^"3 27 

14 ^\d\ -Xx  j n2d2X2  j n3d 

If there are three projects (three underlying assets), the probability distribution for 

V . (/) is as follows: 

Kl'"2"3 CO with probability pU [  pU i  pU z  + 

KIT*3 CO with probability pUi pUi pdj 

Kïf2"2 CO with probability /?„_ piz p^ 

CO with probability p pd  p. 

K+i"2"' CO with probability pdi p^ pUj + 

Pi2 Pl3 P23 

8 
I Pi2 ~ Pl3 ~ P22 

8 
~ P12 + Pll ~ P23 

8 
P12 Piz + P23 

~Pl2 Pl3 + P23 

Kii l d '  CO with probability pd i  P^Pdz 

Ktf2"3  CO with probability pd  pd  p 

yd^d, ̂  payability pd{ pdi piz 

+ 

8 
~ P12 + P13 ~ P23 

8 
Pl2 ~ Pl3 ~ P23 

8 
Pl2 Pl3 P23 
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We note that the above probabilities are risk-neutral probabilities. Based on these 

probabilities, we can calculate the expected value E[Vt+l (/)]. This will be discounted at the 

risk-free rate of return as in equation (5.1). 

Switching from an option to another option requires a switching cost. If a switch is 

between the same option, the switching cost is assumed to be zero. Some switches are not 

possible. For example, switching from operating at a constructed capacity level to deferring 

the construction for the same project is not possible. Thus, the switching cost is assumed to 

be infinite. 

We note that each option, given a state and a period, should be checked for feasibility. 

That is, there may be various constraints (such as financial or demand constraints) that make 

it impossible to exercise an option. For example, a utility may not have enough budget to 

construct three gas turbine power plants in a period. With the considerations of switching 

costs and constraints, the number of options that should be evaluated through backward 

dynamic programming will be greatly reduced. 

The value of the investment at the beginning of the last period can be obtained as 

follows: 

max 
V r

s(m)= .  (C}(i)-I(m->f)) 
i 

s.t. 

I(m —> i) = 0 for i  = m 

i G FJ 
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5.7 A Numerical Example for Three Correlated Projects 

We now provide a numerical example with hypothetical data to illustrate our 

multiple-period lattice model. In this example, there are three correlated projects. Project 1 

represents a potential gas turbine power plant, called power plant 1. Project 2 represents 

another potential gas turbine power plant, called power plant 2. Project 3 represents a 

potential wind power plant, called power plant 3. An eight-branch lattice is employed to 

represent the evolution of the three correlated underlying assets. Each project has the options 

to construct the power plant, to defer the construction of the power plant, to operate at the 

constructed capacity level, and to sell the constructed power plant at its salvage value. 

Therefore, the total number of options in a period is 64. 

The planning horizon is 3 periods and the length of a period is 6 months. For 

simplicity, we assume that the construction of a power plant can be completed in a period. 

This assumption can be easily relaxed by dividing construction of a power plant into multiple 

stages and each stage can be completed in a period. The completion of a stage will provide 

the option to complete the following stage. Risk-free rate of return in a period, r, is assumed 

to be 0.05. The correlation coefficient between underlying assets 1 and 2, pl2, is assumed to 

be 0.5. The correlation coefficient between underlying assets 1 and 3, p13, is assumed to be 

-0.6. The correlation coefficient between underlying assets 2 and 3, p23, is assumed to be 

-0.7. The data for each potential power plant is listed in Table 5.2. 
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Table 5.2 Potential power plants 

Gas turbine 1 
(power plant 1) 

Gas turbine 2 
(power plant 2) 

Wind power 
(power plant 3) 

Constructed 
capacity (MW) 

100 150 50 

Annual rate of 
return, pi 

0.3 0.3 0.2 

Annual standard 
deviation, cri 

0.4 0.4 0.2 

Construction cost 
($ million) 

50 80 20 

Market value of the 
underlying asset at 
the beginning of 
period 1 

60 90 25 

There exist two sets of constraints. The details of these constraints are listed in Table 

5.3. We note that the total construction costs spent in a state cannot be greater than the 

budget restriction in that period. Also, we assume that the upper management has strategic 

requirements on capacity that is external to the real options model (i.e., the capacity 

requirements are parameters). The total capacity operated in a state cannot be less than the 

capacity restriction under that state. 

With the input data, we first calculate the risk-neutral probabilities of the binomial 

lattices for each underlying asset as pUt = 0.4735, pu^ — 0.4735, = 0.553. The multiple 

Table 5.3 Budget and capacity constraints 

t= 1 t=2 t=3 

Budget 
(US$ million) 

150 for all states 60 for all states None for all states 

Capacity 
requirement (MW) 

None for all states 250 for first 6 states 
230 for last 2 states 

280 for first 26 states 
220 for last state 



www.manaraa.com

81 

for an up-move for underlying asset 1, 2, 3 is calculated as 1.327, 1.325, and 1.152, 

respectively. The multiple for a down-move for underlying asset 1, 2, 3 is calculated as 

0.754, 0.754, and 0.868, respectively. Then, with the values of the correlation coefficients, 

we can calculate the risk-neutral probabilities for the eight branches emanating from each 

state in the eight-branch lattice as shown in Table 5.4. 

Table 5.4 Probability for each branch 

Branch 1 2 3 4 5 6 7 8 
Probability 0.024 0.325 0.088 0.036 0.063 0.061 0.378 0.024 

With the probabilities for the branches, the multiples for the underlying assets, and 

the initial values for the underlying assets, the lattice representing the evolution of the 

underlying assets is finally constructed. 

Each option is associated with a three-period eight-branch lattice as the underlying 

assets. The net cash flows representing the payoffs of an option under different states (i.e., 

nodes in a lattice) can be estimated by using the values of the underlying assets. In this 

example, the payoff of the option to sell a power plant is assumed to be the value of its 

underlying asset. The payoff of the option to construct a power plant is assumed to be the 

negative value of its construction cost, which is assumed to be constant over time. The 

payoff of the option to operate a power plant in a period is assumed to be one-fourth of the 

value of its underlying asset in that period. Finally, the payoff of the option to defer the 

construction of a power plant is assumed to be zero. 

We note that, in our three-period example, period 3 is not the last period of the life of 

the power plants. Instead, it represents the last period of a utility's planning. Thus, the 
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payoff for the option to operate at its constructed capacity level is assumed to be equal to 2 

times the value of the underlying asset in period 3 if there are two up moves for the 

underlying asset in the previous two periods. 

For some options, the net cash flows are set at negative infinity in some periods. For 

example, if the construction of a generation planning project requires one period to complete, 

then for that project the earliest feasible net cash flows for the option to operate at the 

constructed capacity occur in period 2. Therefore, the net cash flows are set at negative 

infinity in period 1. 

5.7.1 Solution 

In the first 26 states at r=3, the only option that satisfies the capacity constraints is the 

option to operate all three power plants. In the last state at t=3, four options satisfy the 

capacity constraint. They are the option to operate power plants 1, 2 and construct power 

plant 3, the option to operate power plants 1, 2 and defer the construction of power plant 3, 

the option to operate power plants 1, 2, 3, and the option to operate power plants 1, 2 and sell 

power plant 3. In all states at t=2, the above four options are the only options that satisfy 

both the capacity constraints and the budget constraints. At t= 1, all 64 options satisfy the 

budget constraint. 

After we examine constraints and obtain feasible options for all states, we examine 

the switching costs. There are four feasible options at t=2. However, only the option to 

operate all three power plants and the option to operate power plants 1, 2 and construct 

power plant 3 do not incur infinite switching costs to the option to operate all three power 

plants in the first 26 states at t=3. Since we already operate or construct power plant 3 at t=2, 
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power plant 3 in the last state at t=3. Therefore, the options left in the last state at t=3 are the 

option to operate power plants 1,2, 3 and the option to operate power plants 1, 2 and sell 

power plant 3. Then, at t= 1, only the option to construct all three power plants and the option 

to construct power plants 1, 2 and defer the construction of power plant 3 do not incur 

infinite switching costs. By considering switching costs, we reduce the originally 64 feasible 

options to less than or equal to 2 options in all states that need to be evaluated through 

backward dynamic programming. 

By backward dynamic programming, the optimal options are to construct all three 

power plants at t= 1, operate all three power plants in all states at t=2, operate all three power 

plants in the first 26 states at t=3, and operate power plants 1, 2 and sell power plant 3 in the 

last state at t=3. The corresponding optimal value of the investment at the beginning of t= 1 

is $ 156.96 millions. 

Through this numerical example, we proposed a two-step procedure to reduce the 

number of options that need to be evaluated by backward dynamic programming. First, we 

eliminated the options that violate the constraints. Then, starting from the last period, we 

eliminated the options that induce infinite switching costs. Via this procedure, the size of the 

dynamic programming problem can be greatly reduced. 

5.8 Concluding Remarks 

In this chapter, we first presented an eight-branch lattice model for three correlated 

projects. From this model, we constructed a lattice model for multiple correlated projects 

(n>2). Then, we compared our lattice model with other lattice models. Next, we 
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investigated the roles of correlation coefficients for multiple correlated projects. Finally, an 

illustrative numerical example with three correlated projects was provided to show how 

sequential decisions can be made for a utility with multiple correlated projects. 

We reviewed the several different ways to obtain the probabilities for branches of the 

lattice. It will be interesting to compare and contrast the advantages and disadvantages of 

each way quantitatively. 
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CHAPTER 6. GENERATION PLANNING WITH OUTAGE COSTS 

6.1 Introduction 

In this chapter, we present an extension of a traditional generation planning model 

that is in contrast to the real options models discussed thus far. In this model, we incorporate 

both forced utility outage cost and forced customer outage cost. By including the forced 

customer outage cost, we attempt to take the customer satisfaction level into consideration in 

so far as the generation planning is concerned. 

The purpose of traditional generation planning models is to determine the generation 

units to be constructed and the amount of power to be produced while the total cost (fixed 

and production cost) to a utility is minimized. We note that the traditional models only focus 

on relatively easy-to-quantify factors such as fixed and production cost. Forced customer 

outage cost and forced utility outage cost are not considered in most of the generation 

planning literature. 

In this chapter, we develop a generation planning model, explicitly considering forced 

customer outage cost and forced utility outage cost. Since utility outage cost is the revenue 

loss to a utility, which can be obtained from published data, this chapter focuses on how to 

obtain customer outage cost. To obtain customer outage cost, we first review the 

quantification approaches for customer outage cost in the literature. Because the diversity of 

the quantification approaches presents some difficulties for utilities to make generation 

planning decisions (e.g., consistency of assumptions), we suggest a single quantification 

approach that can be used in generation planning. This single approach provides us the 

customer outage cost per unsupplied MWh. Then, we show how the expected amount of 
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outage can be obtained via a linear regression model. By multiplying the customer outage 

cost per unsupplied MWh by the expected amount of outage, the expected customer outage 

cost can be obtained. Finally, we develop a mixed integer linear programming model 

incorporating customer outage cost and utility outage cost for generation planning, and 

illustrate the key features of the model via a numerical example. 

The organization of this chapter is as follows. In Section. 6.2, we review the 

quantification approaches for customer outage cost in the literature. In Section 6.3, we 

introduce a linear regression model to estimate the expected amount of forced outage. In 

Section 6.4, we present how the expected outage cost can be obtained using the results of 

Sections 6.2 and 6.3. In Section 6.5, a mixed integer linear programming model with the 

expected outage cost is formulated. Section 6.6 provides a comprehensive numerical 

example to illustrate the applicability of the model. Finally, concluding remarks are provided 

in Section 6.7. 

6.2 Quantification Approaches for Customer Outage Costs 

The quantification approaches for customer outage costs in the literature can be 

classified into three groups: (1) proxy approaches, (2) sophisticated econometric approaches, 

and (3) survey approaches. This classification depends on the nature of how customer outage 

costs are estimated. Proxy approaches apply secondary data (e.g., backup power costs, wage 

rates) to estimate customer outage costs. Sophisticated econometric approaches investigate 

the possible loss to firms in case of outage. For example, the possible outage costs to a firm 

could include damage to material, forgone profit, and wage payment to idle workers if an 

outage occurs. On the other hand, survey approaches inquire customers to identify their 
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possible loss in different hypothetical scenarios. Finally, we observe that the study of outage 

costs has often focused on only a specific customer type such as residential, industrial, and 

commercial types. We now elaborate on these specific customer types. 

(1) Residential type 

Several papers have argued that the loss of leisure is the main element of 

outage costs to residential customers. Munasinghe [38] claims that the 

enjoyment of leisure is usually restricted in the evening. Leisure activities 

such as television-watching and reading require electricity. Therefore, there 

will be very few substitution possibilities for those electricity-dependent 

activities if an outage occurs. The same paper also develops a model of 

estimating the outage costs to the residential customer type by using a utility 

function (i.e., a proxy approach of wage rate). The key idea is that an outage 

interrupts the preferred pattern of consumption and thus leads to a loss. The 

author claims that the wage rate could be a good proxy for residential outage 

costs. 

(2) Industrial type 

Rental and Ravid [9] claim, "industrial customers would purchase the backup 

generating power if the expected gain from the marginal self-generated kWh 

equals the expected loss from the marginal kWh that is not supplied by the 

utility. Hence, the expected marginal cost of backup power may serve as an 

estimate for the marginal outage costs" (i.e., a proxy approach). The 

sophisticated econometric approach is another common approach in the 

literature. Tishler [50] develops a model to measure expected outage costs by 
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using a production function. In that paper, the costs of outage are contributed 

by various sources such as a possible reduction in productivity. 

(3) Commercial type 

Sanghvi [42] finds that some problems may arise in developing an appropriate 

approach to estimate the outage costs for commercial customers because the 

definition of commercial activities is often unclear. Sanghvi claims that 

"large apartment buildings, small pizza parlors, and moderate size 

manufacturing firms can be classified as the commercial user types." 

However, a large part of commercial activities are production activities. The 

outage costs of those activities can be estimated by using the same approaches 

as we do for the industrial customer type. Moreover, some commercial 

activities, such as large shopping centers, can be viewed as having 

characteristics similar to the residential customer type and can be analyzed by 

using the residential approaches. 

6.2.1 Difficulties in Reconciling Different Approaches 

As presented in the previous section, the study of outage costs has often focused on 

only a specific customer type. If different approaches are employed for different customer 

types, and if the resulting outage costs are aggregated, this could present a serious problem to 

the decision maker of the generation planning. For example, let us suppose that Tishler's 

model [50] (a sophisticated econometric approach) is applied to estimate the outage costs of 

industrial customers. At the same time, let us suppose that Munasinghe's model [38] (a 

proxy approach) based on the wage rate is applied to estimate the outage costs of residential 

customers. Finally, let us suppose that a survey approach is applied to estimate the outage 
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costs of commercial customers. Aggregating the outage costs over all customers in this case 

will be difficult to justify because (1) underlying assumptions are contradictory. For 

example, Tishler's model assumes that a key component of the outage cost is the foregone 

profit of a firm. On the other hand, Munasinghe's model assumes that a key component of 

the outage cost is the wage (i.e., revenue) of a resident. Hence, if these outage costs are 

aggregated, then such a number reflects neither the profit component nor the revenue 

component, making any interpretation inaccurate and misleading. Also, (2) resulting 

outcomes have their own unique tendencies (e.g., survey approaches tend to overestimate; 

see e.g., Sanghvi [42]). Therefore, aggregating outage costs from different approaches 

makes it difficult for utilities to evaluate generation planning projects analytically and 

objectively. 

*A few papers have demonstrated that we should be careful when we compare outage 

costs. Tishler [50] says, "direct comparison of outage cost estimates from different studies 

should be viewed with caution." Moreover, Sanghvi [42] states, "there exists the factors that 

sometimes limit the ability to strictly compare different outage cost estimates. Often the 

estimates are based upon different methodologies, assumptions, economic and demographic 

mixes and local conditions, and for different outage descriptors." 

6.2.2 A Single Approach for All Customers: Proxy Approach 

Caves et al. [14] note that surveys are the principal source of information on customer 

outage costs. Survey approaches inquire customers to identify their possible response in 

different hypothetical scenarios. The customers would be inquired how much it would cost 

them to adjust to this power outage. However, since most consumers do not have much 
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knowledge and quantification experience, it is almost impossible for them to properly 

estimate the costs under the hypothetical scenarios. 

Sophisticated econometric approaches have been commonly used for estimating 

industrial and commercial outage costs. But there will be some difficulties if we apply them 

for residential customers. Caves et al. [14] claim that residential customer type could be 

viewed as industrial customer type if we consider household activities as a production 

process where electricity is an input and leisure activities are outputs. Then residential 

outage cost is the market value of those household activities lost due to an outage. It is, 

however, very difficult to obtain a complete listing of household activities and their market 

values. 

In contrast to the survey approach and the sophisticated econometric approach, the 

proxy approach is conceptually simple and the data for proxies are often easily obtainable. 

Even though the proxy approach may contain theoretical deficiencies and/or inaccurate 

estimates (see e.g., Woo and Pupp [59]), relative to the sophisticated econometric approach, 

for a quick and first-order approximation, the proxy approach can be effective and practical. 

Furthermore, as the data accumulate, the accuracy of this approach can improve. Hence, in 

this chapter, we choose to employ the proxy approach as the single quantification approach 

for all customer types. 

To illustrate how the proxy approach is applied to quantification of outage costs of all 

customer types, we will employ the wage rate as the proxy for the outage cost of residential 

customers and the backup power cost as the proxy for the outage cost of industrial and 

commercial customers. 
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6.2.3 Wage Rate Method for Residential Customers 

Munasinghe [38] demonstrates that the wage rate can be a good estimate for 

residential outage costs. Specifically, he develops a linear regression model as follows: 

OQ = b\Jr b2Yi + 6i (6.1) 

where i, OC[, e,., and Yi are the index of customer, the outage cost per hour for customer i, 

the random disturbance term for customer i, and the net income earning per hour for 

customer i. 

A partial collection of data provided in Munasinghe [38] is shown in Table 6.1. We 

note that the Brazilian currency is used. 

Given this partial collection of data, we estimate the coefficients to be b\ = 3.097 and 

bz — 0.922, yielding a good fit with R2 = 0.806. Hence, the proxy relation between the outage 

cost and the wage rate for customer i is OC,-(Brazil) = 3.097 + 0.9227}. In U.S. currency, this 

Table 6.1 Residential consumer survey results (Cr$ per hour) 

Net Income Earning Outage Cost Net Income Earning Outage Cost 
Rate Rate 
10.5 12 27.7 20 
11.1 15 30.8 35 
14.2 10 40.3 30 
15.4 20 40.3 30 
18.5 25 45.5 50 
18.5 35 48.0 60 
19.7 20 55.1 45 
21.5 15 64.6 55 
21.5 25 64.6 60 
24.6 15 73.9 85 
24.6 40 

* U.S. $1 =Cr $12.35 (end 1976) 
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proxy relation is converted as OC,(U.S.) = 0.251 + 0.9227,- (note that this converted model is 

only for illustrative purpose). 

We note that OQ is the outage cost per hour for customer i. To incorporate 

residential customer outage costs in our generation planning model, we essentially need 

outage costs per kWh. In what follows, we show via a numerical example how the outage 

cost per kWh can be obtained from the outage cost per hour for customer i, OQ. 

Step 1. Suppose that a utility has obtained the following data for customer i: 

The wage rate Y( : US$11.12 per hour, i.e., the corresponding outage cost OQ is 

US$10.5 per hour (because OCt = 0.251 + 0.9221^.). 

The total number of leisure hours: 1000 hours per year. 

The total electricity consumption during leisure periods: 700 kWh. 

Step 2. The average power consumption in leisure activities for customer i can be calculated 

as 

700kWh=0.7kw 
1000 h 

Step 3. Outage cost per kWh for customer i can be calculated as 

US$10.5 per hour = us$l5 kWh = US$ 15000 per MWh 
0.7 kW 

6.2.4 Backup Power Cost Method for Industrial and Commercial Customers 

Thus far we have shown how the outage cost is estimated for the residential 

customers via the wage rate method. Now we will show how the outage cost is estimated for 

the industrial and commercial customers via the backup power cost method. This method is 

similar to the work by Bental and Ravid [9]. 
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The backup power cost method assumes that customers act rationally and would like 

to insure themselves against the damage caused by electricity outages. Because insurances 

are unavailable, industrial and commercial customers will acquire backup generators. 

Therefore, the costs of self-generating a kWh of the unsupplied utility electricity may serve 

as an estimate for the expected avoided outage costs due to this self-generating kWh. 

The costs of generating backup power consist of two items: the capacity cost of 

constructing the backup facility, and operating cost. So the average outage costs per kWh 

can be expressed as 

AC = — + v (6.2) 
H 

where b, H, and v are the annual capacity cost of backup facility per kW, the expected 

duration of outage per year, and the operating cost of generating power per kWh, 

respectively. Let us assume, in this section, that the interest rate is 1% and the capacity cost 

of backup facility per kW is $150. Also, we employ straight-line depreciation over ten years, 

and the tax rate is 20%. Then the annual capacity cost of backup facility per kW, b, can be 

calculated as 

6 18.357 

where ( A  /  P  ) is the uniform series worth of a present sum and the value of ( A  I P ) ™  is 

found as 0.14238 in engineering economy textbooks. Other key parameter values are as 

follows: The expected duration of outage per year, H, is taken to be eight hours per year. 

Operating cost per kWh, v, is $0.5. Using the above equation, the average outage cost per 
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Table 6.2 Average outage cost 

H 
AC 

8 
2.79 

16 
1.65 

24 
1.26 

48 
0.88 

96 
0.69 

kWh, AC, is $2.79. Table 6.2 below shows the expected durations of outage per year and the 

corresponding average outage cost. 

6.3 Expected Amount of Outage 

The proxy approach provides us a simple and quick tool to estimate customer outage 

costs per unsupplied kWh. To incorporate outage costs into a capital budgeting model for 

generation planning, the expected amount of outage in MWh is needed. Hence, first, we 

show how the expected amount of outage in MW can be estimated via a linear regression 

model. 

Due to the random nature of outage, Ammons [1], Irisari [24], Ghajar and Billinton 

[19], Niimura and Kermanshahi [39], and Bloom [11] have demonstrated that the expected 

amount of outage can be computed from the available capacity and demand distributions. 

They have presented that the levels of customer demand and available capacity will 

determine the expected amount of outage. From this basis, we construct a linear regression 

model consisting of the expected amount of outage as the dependent variable and the levels 

of customer demand and available capacity of a utility as the independent variables. The 

linear regression model is given by 

j 
FOu = alLajtujtyj +Ppu +r (6.3) 

where 
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j = the index of either an existing generation unit or a generation expansion 

planning project. / = j are for existing generation units, 

j = j +1,..., J are for generation expansion planning projects 

i =the index of intervals in a period, e.g., peak/off-peak durations, i = 1,...,/ 

t  = t h e  i n d e x  o f  p e r i o d  o f  t i m e ,  e . g . ,  y e a r ,  t  =  1 , , T  

FOu = the expected amount of outage at a point in time in interval i of period t 

(MW) cumulative of all customer types 

djt = the availability factor for generation unit j in period t, 0 < ajc < 1 

Ujt =the upper bound on production level (capacity) on generation unit j in 

period t (MW) 

yj = the binary variable indicating whether generation expansion planning 

project j is to be constructed. For j = 1,..., y, yy- = 1. For 

j = j + 1,..., J, y j = 1 implies construction, y j = 0 implies no 

construction 

Pit = the average customer demand at a point in time in interval i of period t 

(MW) 

a, J3,y = the coefficients needing to be estimated 

The expected amount of outage to a specific customer type can be obtained by 

multiplying the expected amount of outage by the fraction of the total energy consumption 

consumed by that specific customer type (see e.g., Lo et al. [31]). Hence, the expected 

amount of outage in MWh for customer type w in interval i of period t is 

kwtFOithu (6.4) 
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where 

w =the index of customer type (1 : residential type, 2: commercial type, 3: 

industrial type) 

kw[ =the fraction of the total energy consumption consumed by customer type w 

in period t  (£k y n  = 1)  
w=l 

hu = the number of hours in interval / of period t 

6.4 Expected Outage Cost 

We note that the expected outage cost in our model consists of expected utility outage 

cost and expected customer outage cost. Expected utility outage cost is the expected revenue 

loss to a utility. The expected revenue loss to a utility can be obtained by multiplying the 

expected amount of outage in MWh by revenue per MWh. Expected customer outage cost 

can be obtained by multiplying the expected amount of outage in MTWh by customer outage 

cost per unsupplied MWh. Hence, the expected discounted outage cost from customer type 

w in interval z of period t is 

(C& + C^it )kwtFOith-u (6.5) 

where 

— the discounted revenue per MWh to a utility from a representative customer 

type w in interval i of period t 

C^( = the discounted outage cost per unsupplied MWh for a representative 

customer of customer type w in interval i of period t. (i.e., Cfit can be 
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estimated by the wage rate method, C£, and C^it can be estimated by 

the backup power cost method) 

Hence, the total expected discounted outage cost for all customer types over the entire 

planning horizon is 

ZÉÈcC +CZ,)K,FO„h„ (6.6) 
r=I i—I vv=I 

6.5 The General Model 

The objective of this model is to minimize the total cost consisting of discounted 

fixed, production, utility outage, customer outage, and outside purchase costs minus the 

discounted revenue from selling any power outside. This objective is subject to the 

constraints of production, purchase, sale, demand, budget, and reliability. The decision 

variables representing generation expansion planning projects are binary (0-1) for the project 

selection purpose. The decision variables representing the amount of power produced, the 

portion of construction budget not used, the amount of outside purchase, and the amount of 

outside sale are all continuous variables. Hence, the resulting mixed integer linear 

programming model is formulated as follows: 

Minimize 

y j »x jit i S t ' OPit, OS it 

j T I J T I 3 

(6.7) 
T I T I 

+YZPC«0PU>>« -YZSP>0S«h« 
f=l (=1 

Subject to 
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Lj,yj ^ xju ^ ajtUjtyj (6.8) 

0<0%<CW%« (6.9) 

0<0^ (6.10)  

OS,,<Y.x»+OP i l-P l, (6.11) 
/= 1 

s ,  + +ZCj, y j  = B ,  (6.12) 
>1 

2>v.,C//fyy>(l + m)P, (6.13) 
/= i 

2>,-Sl (6.14) 
ye(Al 

yy- =1 f°r j = 1,...,/ 

y j e {0,1} for j = j +1,..., J" (6.15) 

> 0, > 0, OPit > 0, OSit >0 (6.16) 

j — 1>--.j J 

z = 1,.../ 

t = 

k = l,..., Â" 

the construction budget available in period f 

the construction expense required for constructing generation expansion 

planning project j in period t 
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f. = the sum of discounted fixed costs (e.g., taxes, insurance, maintenance, 

etc.) associated with generation unit j over the planning horizon 

FJit = the discounted production cost (i.e., variable cost and not fixed cost) per 

unit of energy output associated with generation unit j in interval i of 

period t ($/MWh) 

Ljt = the lower bound on production level on generation unit j in period t (MW) 

m = the reserve margin for extra demand above Pt 

OPit_ nax =the maximum amount of power can be purchased in interval i of period t 

(MW) 

OSft_aax =the maximum amount of power can be sold in interval i of period t (MW) 

PCU — the discounted outside purchase cost in interval i of period t (S/MWh) 

rt = the rate of return on short term investments for period t, rQ = 0 

OPit = the amount of outside purchase in interval i of period t (MW) 

OSu = the amount of outside sale in interval i of period t (MW) 

Sc = the construction budget unused in period t, S0 = 0 

SPit = the discounted selling price per unit of energy output in interval i of 

period t ($/MWh) 
V 

{J k  } = the set of the indices of the generation expansion planning proj ects 

representing all possible beginning years of the same potential generation 

unit k (k = 1,...,K) 

xjit — the power produced by generation unit j in interval i of period t (MW) 
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Pt = the peak demand during period t (MW) 

In this formulation, we consider both existing generation units and generation 

expansion planning projects. We note that a generation expansion planning project 

represents a particular type of generation unit to be constructed at a given time with a given 

capacity. If the value of a binary decision variable is one, the corresponding project is 

selected for construction. If the value of a binary decision variable is zero, the corresponding 

project is not selected for construction. On the other hand, we note that the values of binary 

decision variables corresponding to the existing generation units are fixed at one. 

The objective function is the sum of discounted fixed cost ( fj-yj )•> discounted 

production cost (T^, FJitxri[hit ), discounted utility and customer outage cost 

( E L  Z L ,  Z L i  +  C - v  ) k w F O i t h i t  ), and discounted outside purchase cost 

( PCic OPit hit ) minus discounted revenue from selling any power outside 

( S P i t O S i t h u  ). We note that the objective function is measured in present worth 

because the planning horizon can be expensive (ten years or more). We further note that, for 

computational tractability, we choose a linear production cost function (cf., nonlinear 

production cost function; see e.g., Amnions and McGinnis [2]). The linear production cost 

function can be found in numerous papers (see e.g., Anderson [4], Hobbs [20], and Hobbs 

and Centolella [21]). 

Constraints (6.8) state that the amount of power to be produced is bounded from 

above by the available capacity and bounded from below by the minimum required 

production level for each generation unit. We note that these constraints are non-trivial only 
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if yj = 1. Furthermore, we note that when a generation expansion planning project is under 

construction, the corresponding Ljt and o.jtUjt will be set at zero. This implies that no 

power will be produced during the construction period. 

Constraints (6.9) and (6.10) state that the amount of outside purchase and the amount 

of outside sale cannot exceed some given upper limits. These limits may be determined by 

the contracts between the utility we are modelling and other utilities. In Zhang et al. [60], 

Christoforidis et al. [16], and Bart et al. [6], an upper limit for each purchase or sale is 

considered. We note that, for simplicity, in this chapter we do not distinguish each purchase 

or sale. Instead, we have the upper limits for the amount of outside purchase and the amount 

of outside sale for an entire time interval. 

Constraints (6.11) state that the sum of power produced plus the amount of outside 

purchase minus the amount of outside sale is greater than or equal to the expected customer 

demand. As the electric power industry becomes more competitive, there will be an 

increasing number of opportunities for outside purchase and outside sale. These constraints 

capture the utilities' attempt to satisfy customer demand via self-producing and outside 

purchase. Also, these constraints consider the opportunities of selling extra power to other 

utilities. 

Constraints (6.12) state that in each period (i.e., year) a certain amount of budget is 

available for the construction of generation expansion planning projects. The construction 

budget that is left in the current period will be carried forward to the next period for 

construction. The construction budget carried forward earns interest at some specified rate of 

return on short term investment. We note that Bt, Cjt, and St are not measured in present 
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worth. We also note that, for generation expansion planning projects, the corresponding 

CJt's will be set at zero before the start of construction and after the end of construction. For 

existing generation units, all CJt's are set at zero because no construction expense is 

required. 

Constraints (6.13) state that the sum of available capacity is greater than or equal to 

the sum of peak demand and reserve margin. The parameter Pt is the peak demand in period 

t and can be viewed as the maximum amount of demand among all intervals in a same 

period. We note that both outage cost and reserve margin (for reliability purpose) are 

considered in our model. Due to the random nature of outage, the improvements in reliability 

can help utilities reduce the expected amount of outage but cannot completely eliminate it. 

Hence, we incorporate the outage cost in the objective function and have reserve margin as 

reliability constraints in our model. 

For a potential generation unit k{k — there may be a multiple number of 

possible beginning years of construction. Each possible beginning year of construction 

represents a generation expansion planning project. Hence, a potential generation unit k may 

have a multiple number of generation expansion planning projects. The set Jk in constraints 

(6.14) consists of the indices of the generation expansion planning projects for the same 

potential generation unit k. We assume that once a project begins, the project will continue 

to completion. Constraints (6.14) state that at most one generation expansion planning 

project (one beginning year) can be selected for each potential generation unit. 
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Constraints (6.15) state that there are y existing generation units and J—j 

generation expansion planning projects. Finally, constraints (6.16) state that the continuous 

decision variables are nonnegative. 

6.6 Numerical Example 

In this section, we illustrate some key features of the model via a hypothetical 

numerical example. In this numerical example, we have a two-period planning horizon (T= 

2) with only one interval i (i.e., the interval is one year). Therefore, the subscript i is ignored 

in the notations of this example. There are two existing generation units and two potential 

generation units (y = 2, K = 2 ). We assume that all potential generation units can be 

constructed at any period during the planning horizon. Hence, there are four generation 

expansion planning projects (i.e., J =6, the first two are existing generation units, the last 

four are generation expansion planning projects). Utilizing the notation Jk defined in 

previous section, we note that: for k =1, Jl = {3,4} , fork =2, J2 = {5,6} . This implies that 

the potential generation unit 1 is associated with projects 3 and 4. Similarly, the potential 

generation unit 2 is associated with projects 5 and 6. We note that this two-period example 

can be extended to a large-scale planning problem which may span many periods. We note 

that a period may be much longer than a year. This period represents a time framework at 

which a critical generation expansion planning decision can be made. 

For simplicity, in this model, we assume that in any period a project can be selected 

for construction and the power will be available in the same period (i.e., the duration of a 

period may be much longer than a year). We note, however, it is possible to elaborately 
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model the construction aspect by splitting the period into a multiple number of years, and 

extend the model accordingly (e.g., if a project is under construction for a particular year, 

then there will be no production during the year.). 

6.6.1 Input Data 

First, we need to estimate the coefficients of the linear regression model for the 

expected amount of outage. For this, we employ the data in Wang and Min [54] to produce 

Table 6.3. 

Table 6.3 Outage data 

Expected amount of forced Demand (MW) Capacity (MW) 
outage (MW) 
3.1585 126 200 
3.62 81 125 
2.8324 89 100 
3.33 100 150 
1.2245 106 150 
2.779 69 75 
4.75 95 150 
4.0875 115 150 
0.39 13 25 
1 20 50 
6.175 115 150 

Given Table 6.3, we can estimate the coefficients a, J3, and y of the linear 

regression model. By using the SAS software package (SAS Institute, Inc. [44]), we estimate 

the coefficients as a = —0.009502,/? = 0.044012 , and y = 0.459070 . 

The hypothetical input data (similar to those found in Wang and Min [54]) for 

existing generation units and generation expansion planning projects are shown in Tables 6.4 
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and 6.5, respectively. The reserve margin (m) is assumed to be 0.05. The periodic data are 

provided in Table 6.6. 

In what follows, we assume the data is applicable to period 1 as well as period 2. We 

need data to estimate customer outage cost and utility outage cost. To estimate the outage 

Table 6.4 Data for existing generation units 

Fixed cost (US$) Production Capacity Lower bound Availability 
cost($/MWh) (MW) (MW) factor 

Unit 1 fx =5,735,640 Fu =17 C/n =1,073 £u=50 an = 0.85 

Fn =17 </12 =1,073 A2 =35 a i2  =  0.90 
Unit 2 /2 = 2,500,000 F2I =17 Uzl =598 £2, = 20 a2i = 0.76 

F22=17 U22 = 600 £22 = 30 a 22 = 0.90 

Table 6.5 Data for generation expansion planning projects 

Fixed cost Production Capacity Lower bound Availabilit Construction cost 
(US$) cost($/MWh) (MW) (MW) y factor (US$) 

Potential f3 =5,000,000 F,, =17 C/31 =900 £3, =45 a31=0.95 C31 =10,000,000 
generation F32 =17 t/32 =900 L32 = 45 a32 = 0.95 C32=0 
unit 1 2 32 

constructed 
in period 1 
Potential /"4 =2,500,000 F41=0 U4l =0 L41 =0 a4l =0 C41 =0 
generation F42=17 t/42 = 900 Z,4, =45 a42 =0.95 C42 = 11,000,000 
unit 1 
constructed 
in period 2 
Potential f5 =3,000,000 FS1 =18 USI =660 LSI =35 a51 =0.95 C51 =15,000,000 
generation F52 =18 U5, =660 £s, =35 =0.95 C52=0 
unit 2 2 2 

constructed 
in period 1 
Potential f6 = 1,500,000 F6l =0 U6l = 0 L6l = 0 a6l = 0 C61 = 0 
generation F62=18 U62 =660 L62 = 35 a62 = 0.95 C62 = 16,000,000 
unit 2 
constructed 
in period 2 
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Table 6.6 Periodic data 

h, (hour) PC, 
($/MWh) 

SP, 
(S/MWh) 

OPl-zmx 
(MW) 

^(-rnax 
(MW) 

P, 
(MW) 

r, 5, 
(USS) 

Period 1 8,760 30 30 1,000 1,000 1,000 0.1 25,000,000 
(r=l)  
Period 2 8,760 30 30 1,000 1,000 1,000 0.1 25,000,000 
( t  =  2 )  

cost for the residential customers, we first assume that the wage rate for a representative 

residential customer is US$11.12 (see e.g., U.S. Bureau of Labor Statistics [52]). Then, we 

apply the steps of the wage rate method and the data provided in the section of the wage rate 

method. The outage cost per MWh for a representative residential customer is calculated as 

US$15000 (C^ = 15000). To estimate the outage cost for the commercial and industrial 

customers, we apply the backup power cost method. We assume that the expected duration 

of outage per year for a representative commercial and industrial customer is 16 hours 

(hypothetical). Then, from Table 6.2, the outage cost per MWh for a representative 

commercial and industrial customer is US$2790 (C^ = C3l = 2790 ). 

Since utility outage cost per unsupplied MWh is essentially the revenue per MWh to a 

utility, we need data for the revenue per MWh (price of electricity) from all customer types. 

Based on some government publications, the revenue per MWh to a utility from a 

representative residential, commercial, and industrial customer is US$84, $77, and $47 (see 

e.g., U.S. Bureau of the Census [53]), respectively ( C" = 84, C2l = 77, C"x =47). Finally, 

the fraction of the total energy consumption consumed by residential, commercial, and 

industrial customers are 31% (&,,), 19% (&21 ), and 50% (/c31 ), respectively (see e.g., Lo et 

al. [32]). 
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6.6.2 Optimal Solution 

We solve this example by using the LINDO software package (LINDO Systems Lie. 

[29]). The details of the optimal solution are as follows: 

For the existing generation units 1 and 2, we have the binary variables yx — y2 = 1. For the 

potential generation units 1 and 2, it is optimal to be constructed in period 1 (i.e., 

y3 = 1 j4= 0, y5 = 1, y6 =0). The value of the objective function is US$1,998,480,429 

(recall this figure is not for one year because each period will consist of multiple years). 

As for the optimal solutions for the continuous variables for period 1, we have the 

following. The power produced by the existing generation units 1 and 2 is 655.52 MW and 

454.48 MW, respectively (xn = 655.52, x2l = 454.48 ). The power produced by the 

potential generation units 1 and 2 is 855 MW and 35 MW, respectively (x3I = 855, 

x5l = 35). The amount of outside purchase is 0 (OP{ =0). The amount of outside sale is 

1,000 MW {OS{ = 1,000 ). The construction budget unused is 0 (5, = 0). 

As for the optimal solutions for the continuous variables for period 2, we have the 

following. The power produced by the existing generation units 1 and 2 is 570 MW and 540 

MW, respectively (x12 = 570, x2 = 540 ). The power produced by the potential generation 

units 1 and 2 is 855 MW and 35 MW, respectively (x32 = 855, x52 = 35 ). The amount of 

outside purchase is 0 ( OP2 = 0). The amount of outside sale is 1,000 MW (OS2 = 1,000). 

The construction budget unused is US$25,000,000 (iS^ = 25,000,000 ). 

We observe that both of the potential generation units are constructed in period 1. 

Since our model provides the opportunities for outside purchase and sale, the purchase cost 

and the selling price would influence a utility's decisions on the amount of power produced. 
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In our example, relative to the production price, the selling price is high. We believe that this 

high selling price makes a utility willing to produce more power than the customer demand, 

and sell the extra power to other utilities. Since it is profitable to sell in both periods 1 and 2, 

the optimal decision is to construct and operate from period 1 on. 

6.7 Concluding Remarks 

In this chapter we first examined the quantification approaches for customer outage 

cost in the literature. Next, we showed how the expected amount of outage can be obtained 

via a linear regression model. The multiplication of the outage cost per unsupplied MWh by 

the expected amount of outage provides the expected customer outage cost. Similarly, the 

multiplication of the revenue per MWh to a utility by the expected amount of outage 

provides the expected utility outage cost. Expected customer outage cost and expected utility 

outage cost are the components of expected outage cost. Finally, we developed a mixed 

integer linear programming model incorporating expected outage cost for generation 

planning. Via this model, the selection of generation expansion planning projects, the amount 

of power produced, the portion of construction budget not used, the amount of outside 

purchase, and the amount of outside sale can be determined. 

For future research, it would be worthwhile to rigorously determine quantitative 

conditions under which the traditional generation planning is still recommendable instead of 

the generation planning models under uncertainties such as the models based on the real 

options approaches. 
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CHAPTER 7. COMPARISONS OF REAL OPTIONS APPROACH VS. 

TRADITIONAL APPROACH FOR GENERATION PLANNING 

7.1 Introduction 

In this chapter, we compare the multiple-project multiple-option model in Chapter 5 

with the traditional generation planning model in Chapter 6 to illustrate the key features of 

the real options approach vs. the traditional approach for generation planning. Such an 

attempt is a first step toward understanding the two different approaches. 

The multiple-project multiple-option model in Chapter 5 is useful when there are 

multiple projects and the projects are correlated. By correlation, we mean that the market 

values of the completed power plants are correlated. Via this model, we can determine the 

optimal sequential strategic decisions over options for correlated projects. 

In the traditional generation planning model in Chapter 6, we incorporated both 

forced utility outage cost and forced customer outage cost. By including the forced customer 

outage cost, we attempted to take the customer satisfaction level into account. Via this 

model, we can determine the generation units to be constructed and the amount of power to 

be produced while the total cost to a utility is minimized. 

This chapter is organized as follows. Section 7.2 provides generation planning 

process based on the real options approach and the traditional approach. Sections 7.3, 7.4, 

and 7.5 compare the multiple-project multiple-option model and the traditional model in 

terms of decision variables, objective function, and constraints, respectively. Sections 7.6 

and 7.7 compare the multiple-project multiple-option model and the traditional model with 
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respect to competition and usage aspects, respectively. Finally, concluding remarks are 

provided in Chapter 7.8. 

7.2 Generation Planning Process Based on the Real Options Approach vs. the 

Traditional Approach 

Figure 7.1 depicts the generation planning process based on the real options 

approach. Figure 7.1 is explained by the following steps focusing on the multiple-project 

multiple-option model in Chapter 5. 

Step 1. We focus on strategic decisions for a utility. These decisions are represented by 

strategic options such as the options to construct, to defer, and to expand the 

constructed capacity level. 

Step 2. Since strategic decisions are long-term decisions, we consider the market values of 

the completed power plants as the underlying assets for the options (see e.g., [48]). 

Step 3. Based on the studies in [7], [48], [49], the movement of the market values of the 

completed power plants can be modeled as geometric Brownian motion processes. 

Step 4. We construct lattice models to approximate the geometric Brownian motion 

processes. We note that, for example, Black-Scholes option-pricing model is a closed 

form solution for the value of a single European call option. However, closed form 

solutions are rare for most of partial differential equations generated for options. 

Step 5. Since options are the derivative assets of the underlying assets, we derive additional 

lattices for the options as in the case of the underlying assets in Step 4. In a lattice, 

the net cash flows representing the payoffs of an option under different states (i.e., 

nodes in a lattice) can be estimated by using the values of the underlying assets. 
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Optimal generation planning over the options 

Construct a lattice model to approximate the stochastic process 
for the correlated underlying assets 

Determine a stochastic process for the underlying asset for each 
project 

Determine strategic options for each project 

Determine an underlying asset for the- strategic options for each 
project 

Construct additional lattices for the options 

Formulate a backward dynamic programming model that 
maximizes the value of the investment 

Figure 7.1 Generation planning process based on the real options approach 
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Step 6. We utilize a backward dynamic programming formulation over the lattice, subject to 

constraints such as budgets and capacity, to make sequential strategic decisions over 

options. 

Step 7. By maximizing the value of the investment that represents the sum of the 

accumulated values of options for each project, we will determine the optimal 

sequential strategic decisions over the options and the corresponding value of the 

investment. 

Thus far, we have examined the generation planning process based on the real options 

Approach. Let us now proceed to investigate the generation planning process based on the 

traditional approach (see Figure 7.2). Figure 7.2 is explained by the following steps focusing 

on the traditional model in Chapter 6. 

Step 1. The changes in the electric power industry encourage competition, which in turn 

encourages more attention to customer satisfaction. We consider the quantified 

customer outage cost as a good representation for customer satisfaction level. The 

quantified customer outage cost can be obtained by multiplying customer cost per 

unsupplied MWh by the expected amount of outage, which is a function of customer 

demand and available capacity (see e.g., [19], [24]). 

Step 2. In the model, we consider both binary decision variables and continuous decision 

variables (see e.g., [2], [20], [54], [58]). Binary variables are for the project selection 

purpose. Continuous variables represent the amount of power produced, the portion 

of construction budget not used, the amount of outside purchase, and the amount of 

outside sale. 
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Formulate a mixed integer linear programming model 
incorporating the quantified customer outage cost 

Optimal generation planning over the integer and continuous 
decision variables 

Quantify customer outage cost to represent the customer 
satisfaction level 

Determine decision variables such as projects to be selected, 
amount of power to be produced 

Figure 7.2 Generation planning process based on the traditional approach 

Step 3. The objective of our model is to minimize the total cost consisting of discounted 

fixed, production, utility outage, customer outage, and outside purchase costs minus 

the discounted revenue from selling power outside (see e.g., [4]). The objective is 

subject to the constraints of production, purchase, sale, demand, budget, and 

reliability. 

Step 4. The optimal solution of the model will help us make the following decisions: which 

projects and when the projects should be constructed. For both the selected projects 

and the existing generation units, the amount of power should be produced, the 

amount of outside purchase and outside sale should be obtained. 
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7.3 Comparisons Based on Decision Variables 

In the multiple-project multiple-option model, we focus on strategic generation 

planning (i.e., no tactical generation planning). All possible strategic decisions are 

represented by strategic options such as construction, expansion, and reduction. The solution 

of the backward dynamic programming formulation provides the optimal sequential strategic 

decisions over the planning horizon. 

On the other hand, the decision variables in the traditional model are for strategic 

generation planning and some degrees of tactical generation planning. The binary decision 

variable will tell us which projects and when the projects should be constructed, which 

represents strategic generation planning. Furthermore, the continuous decision variables will 

tell us, for example, how much power should be produced in each period, which represents 

some degrees of tactical generation planning. 

7.4 Comparisons Based on Objective Function 

The objective function in the multiple-project multiple-option model represents the 

value of the investment that represents the sum of the accumulated values of options for each 

project. By maximizing the objective function for each state in each period subject to 

constraints, starting from the last period, we will determine the optimal sequential decisions 

over the options. 

On the other hand, the objective function in the traditional model represents the total 

cost to a utility. This total cost consists of discounted fixed, production, utility outage, 

customer outage, and outside purchase costs minus the discounted revenue from selling 
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power outside. By minimizing the total cost to a utility subject to constraints, we will 

determine the optimal set of projects to be constructed, the optimal amount of power to be 

produced, the optimal amount of power to be purchased, and the optimal amount of power to 

be sold. 

7.5 Comparisons Based on Constraints 

In the multiple-project multiple-option model, there are constraints associated with 

each state in each period. The constraints may include budgets and capacity requirement 

constraints. For example, under an unfavorable market condition, a utility may not have 

enough budgets to construct all proposed projects at the same time. Therefore, there will exist 

a budget constraint that excludes the option to construct all projects from the set of feasible 

options. 

In the traditional model, there also exist constraints for the available budget for 

construction and constraints for capacity requirements. Moreover, there exist constraints for 

some degrees of tactical decisions. For example, the power produced by a generation unit in 

a period cannot exceed its capacity. 

7.6 Comparisons Based on Competition Aspects 

The major consequence of competition in the electric power industry is that the price 

of electric power may be determined by competitive market mechanisms. In such a case, the 

price of electric power as well as the corresponding rate of return can be much more 

uncertain than before. In this section, we compare the multiple-project multiple-option 

model and the traditional model with respect to competition aspects. 
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Under the new economic uncertainties, the two factors in decision making that have 

become much more significant are: financial risks and managerial flexibility. In the 

multiple-project multiple-option model, financial risks are incorporated by risk-neutral 

probabilities. Furthermore, the possible market conditions are represented by a lattice model. 

By solving a backward dynamic programming model over the lattice, we determine the 

optimal strategic decisions under different market conditions. This provides the managerial 

flexibility. 

On the other hand, in the traditional model, we apply an indirect approach to reflect 

the competitive environments. Under competition, a utility may pay more attention to 

customer satisfaction. The customer satisfaction level can be represented by customer outage 

costs. Therefore, we consider customer outage costs as part of the total cost to a utility that 

should be minimized. 

7.7 Comparisons Based bn Usage Aspects 

With the speed and magnitude of deregulation of generation aspect differing from a 

state to another state in the U.S., the multiple-project multiple-option model is highly 

recommendable to the states with the most progress toward deregulation. Maschoff et al. 

[36] say, "in the past two years, more than 20,000 megawatts of generation assets have been 

sold, with another 20,000 MW announced. During the next five years, it is expected that 

70,000 to 140,000 MW will change hand". Also, Loehr and Rubin [32] say, "Plans have 

been announced for construction of about 51,600 MW of merchant generation by the end of 

2001". Under such dramatic environments, the financial risks and the managerial flexibility 

provided by the multiple-project multiple-option model are vital. 
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On the other hand, the traditional model is most recommendable to the states with 

minimum progress toward deregulation. Moreover, our traditional model incorporates 

customer outage cost which reflects customer satisfaction level. At the 1999 EPRI Summer 

Seminar, Electric Power Research Institute (EPRI, Palo Alto, California) formal conclusions 

say, "North America is closer to the edge, in terms of the frequency and duration of severe 

power outages, than at any time in the last 35 years". Therefore, a utility that can reduce 

customer outage costs will more likely obtain better customer satisfaction, which will in turn 

enhance a utility's strength in competition. 

7.8 Conclusions 

hi this chapter, first, we explained the generation planning process based on the real 

options approach and the traditional approach. Then, we compared the multiple-project 

multiple-option model with the traditional model in terms of decision variables, objectives, 

constraints, competition, and usage. We note that there are other models based on the real 

options approach and the traditional approach. Hence, additional comparisons can be made. 

The models compared in this chapter, however, can be viewed as a first step toward 

understanding the differences and common aspects of these two approaches. 

For future research, it would be interesting to develop a systematic method to 

determine the most suitable method for generation planning (i.e., the real options approach 

vs. the traditional approach) based on the magnitude of deregulation. 
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CHAPTER 8. CONCLUSIONS 

8.1 Summary 

The electric power industry in many parts of U.S. A. is now undergoing a transition 

from a regulated monopoly toward an uncertain, competitive market. The magnitude of 

uncertainties accompanying this transition is truly substantial in generation planning. It is 

thus highly desirable to help utilities quantitatively and objectively in their decision making 

process for generation planning. 

In this dissertation, to help utilities facing generation planning decisions under market 

uncertainties, we designed and analyzed a series of mathematical models based on the real 

options approach. 

In view of the real options approach, under market uncertainties, the realization of 

cash flows often differs from what utilities have expected initially. As new information 

arrives and uncertainties about market conditions are resolved, the utility management may 

adjust its strategy to capture future opportunities. Thus, it is highly beneficial for utilities to 

quantitatively examine various options available in order to exploit the flexibilities that exist 

and/or may exist in the future. 

In Chapter 2, we developed a multiple-project single-option model. In this model, 

each project has an option to expand its capacity. The Black-Scholes option-pricing formula 

(table) is used to determine the value of an option. If the project is selected, the project's 

option becomes available. Thus, the value of a project is represented by the expanded net 

present value (NPV) which consists of traditional NPV and the value of the option. Then, we 
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determined the optimal set of projects by maximizing the expanded NPV of selected projects 

subject to budget constraints and option availability constraints. 

The multiple-project single-option model would be useful when there is essentially 

one dominant option for each project and the projects are independent. However, when there 

are multiple options for a project, this model may no longer be applicable. For such cases, in 

Chapter 3, we developed a single-project multiple-option model. In this model, a generation 

planning project represents a sequence of options. For example, during the construction 

stage, a utility has the option to construct a power plant or the option to defer the 

construction. During operating stage, a utility has the option to expand the constructed 

capacity level or sell the power plant at its salvage value. The selection of an option in one 

period will affect the selections of options in subsequent periods. Therefore, we employed 

backward dynamic programming over a binomial lattice to determine the optimal options for 

a project and the corresponding project value. 

Moreover, in the single-project multiple-option model, a utility determines which 

option to be exercised based on market conditions. Market conditions are represented by the 

market values of a completed power plant. The market value of a completed power plant can 

be modeled as a geometric Brownian motion (GBM) process. To avoid complex partial 

differential equations that may not have analytic solutions, we utilized a binomial lattice 

model to approximate the GBM process. 

The single-project multiple-option is most relevant if there is essentially one 

important project to be considered. However, when there are multiple projects to be 

considered, this model may no longer be applicable. We discussed real options models for 

independent projects in Chapter 2. Let us now proceed to discuss real options models for 
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correlated projects. In Chapter 4, we developed a two-project multiple-option model. It is 

assumed that the market values of the two completed power plants are correlated. By 

employing backward dynamic programming over a four-branch lattice that approximates the 

combination of two correlated GBMs, we determined the optimal options for the two projects 

and the corresponding value of the investment. Furthermore, based on the assumption that 

the two completed power plants are correlated, we investigated the roles of the correlation 

coefficient in the value of an option and decision making. 

Next, in Chapter 5, we extended the two-project multiple-option model to a multiple-

project multiple-option model. In this model, the market values of the multiple completed 

power plants are assumed to be correlated. First, we developed a multiple-branch lattice 

model to approximate the combination of multiple correlated GBM processes. Then, as in 

Chapter 4, we employed backward dynamic programming over the lattice to determine the 

optimal options for the multiple projects and the corresponding values of the investment. 

Next, we investigated the roles of the correlation coefficients among projects in decision 

making and the value of an option. 

In addition, we provided a traditional generation planning model in Chapter 6 for 

comparison purposes to the real options models. In this traditional model, we incorporated 

the outage costs of customers. Current changes in the electric power industry encourage 

competition, which in turn encourages more attention to customer satisfaction. By including 

the customer outage cost, we attempted to take the customer satisfaction level into account. 

Finally, various comparisons between the real options approach and the traditional approach 

for generation planning are provided in Chapter 7. 
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We hope that the series of models as well as the data and illustrative numerical 

examples in this dissertation will help utilities to effectively and efficiently decide and 

manage generation planning projects with market risks. 

8.2 Future Research 

There are various worthy extensions possible based on this dissertation. Three 

possible areas of extensions discussed here are: strategic vs. tactical options, transmission 

planning, other stochastic models, and other approximation models. 

8.2.1 Strategic vs. Tactical Options 

One extension will be the inclusion of tactical decisions in generation planning. In 

this dissertation, we focused on strategic decisions such as the options to construct and 

expand. However, in addition to strategic decisions, a utility also makes tactical decisions 

such as the options to turn on or turn off a generation unit based on a short-term observation 

on the spot market. 

Strategic options usually involve enormous capital investments. Therefore, it is 

reasonable to consider the market value of a completed power plant as the underlying asset 

for strategic options. Based on a relatively long-term observation on the value of a 

completed power plant, a utility makes strategic decisions. On the other hand, tactical 

decisions are usually determined based on a relatively short-term observation on the electric 

power spot market. Therefore, electric power price and fuel price may be the appropriate 

underlying assets for tactical options. 

It is likely that both electric power price and fuel price follow a process other than 

GBM process. Then, the problem becomes how to consider both strategic and tactical 
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options in a single model when the two types of options evolve according to different 

stochastic processes. Furthermore, if the single model can be developed, it will be interesting 

to investigate the impacts of such a combination on decision making in generation planning. 

Another interesting problem will be the reconciliation of the stochastic process for the 

underlying asset for tactical options and the stochastic process for the underlying asset for 

strategic options. Since it is likely that tactical decisions will have accumulated impacts on 

strategic decisions, the accumulated value of tactical options during a period may provide a 

valuable information for making strategic decisions in a later period. Therefore, it would be 

worthwhile to investigate the relationship of the stochastic process for the underlying asset 

for tactical options and for strategic options. 

8.2.2 Transmission Planning 

In this dissertation, we focused on the developments of project planning and 

management models with risks for generation planning. However, transmission planning is 

highly related to generation planning and thus cannot be immune to the economic 

uncertainties existing in the current electric power industry. Therefore, it is also desirable to 

apply our project planning and management models with risks to transmission planning as 

well. 

For example, the value of a transmission network is also highly stochastic depending 

on the transmission volume and time. Given the stochastic market value, the construction 

process of the transmission network may benefit from a real options approach. 

Finally, another extension would be the integrated planning of generation and 

transmission. Traditional generation planning models have considered both generation 

planning and transmission planning in a single large-scale mathematical model, because they 
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are very related. Therefore, it will be worthwhile to consider generation planning and 

transmission planning in a single management model. 

8.2.3 Other Stochastic Models 

hi Subsection 8.2.1, we discussed the strategic vs. tactical options and explained that, 

for strategic options, the value of a completed power plant would be appropriate as the 

underlying asset. At the same time, for tactical options, the electricity price would be 

appropriate as the underlying asset. 

We note that the price of electricity, which is stochastic in an uncertain market, can 

be utilized to make strategic, static (cf. dynamic as in real options models) decisions on 

generation planning. For example, a mean-variance approach (see Appendix B) can be 

utilized. 

hi the near future, it would be interesting to compare and contrast the static mean-

variance approach and the dynamic real options approach to derive managerial insights for 

generation planning. 

8.2.4 Other Approximation Models 

In Section 5.4, we reviewed several different ways to obtain the probabilities for 

branches of the lattice. One interesting problem is the comparisons of the advantages and 

disadvantages of each way quantitatively. 

In addition, lattice models are not the only methods to approximate the GBM process. 

Hence, another interesting problem would be the comparisons of the lattice models with 

numerical methods such as Monte Carlo simulation. 
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APPENDIX A. RISK-NEUTRAL PROBABILITY 

To estimate the value of an option, we can form a replicating portfolio composing of 

the underlying asset and a risk-free asset. To make this clear, let us consider a single-period 

binomial lattice model. E0 represents the value of an option in period 0. E\ and E,2 

represent the outcomes of the option at state 1 (up) and at state 2 (down) in period 1, 

r e s p e c t i v e l y .  E \  a n d  E ]  a r e  k n o w n .  W e  w a n t  t o  v a l u e  E 0  b a s e d  o n  E l  a n d  E f .  

Let us purchase x dollars worth oîX (e.g., x dollars worth of the stock of the existing 

generation unit) and y dollars worth of the risk-free asset in period 0 that will duplicate the 

values of E \  and is f in period 1. Let r  denote risk-free rate of return. In the next period, x + y  

will be worth either ux + (1 + r)y if market conditions go up or dx + (1 + r)y if market 

conditions go down. Therefore, we have 

wx + (l + r)y = E\ 

dx+Q + r)y — Ef 

We have two unknowns, x and y, and two equations. We can solve x and y as 

x r Z - X  

y = 

u —d 

uE{ —dE\ 

(m—</)(! +r) 

Therefore, the value of the portfolio in period 0 is 

E\ -E\ uE\-dE\ 
x + y = — - + — 

u — d (u — d)(l + r) 

1 + r u — d u—d 
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X 4* y ™ d 
By the no-arbitrage principle, x+y must be equal to E0. Let p = , then the value of 

u—d 

the option in period 0 is 

E0 =-j-0£,' +0-P)£,2) 
1 + r 

hi the above equation, we discount the expected value of the option in period 1 at risk-free 

rate of return to obtain the value of the option in period 0. Therefore, p is called risk-neutral 

probability. 
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APPENDIX B. GENERATION PLANNING VIA A MEAN-VARIANCE APPROACH: 

PROFIT VS. RISK 

B.l Introduction 

Traditional generation planning models have rarely emphasized the stochastic price of 

electricity. Therefore, the traditional models may not fully address the risk in capital 

investment decision processes under increased financial uncertainties and economic 

competition. In this appendix, we attempt to fully reflect the financial risk aspect in capital 

investment decision processes by designing and analyzing a particular type of generation 

planning models based on the mean-variance approach (see e.g., [55]). 

In order to quantitatively incorporate the risk in capital investment decision processes, 

we need to first define risk mathematically. We note that the level of risk may be represented 

by the variance of profit (see e.g., [28]) or by the standard deviation of profit (see e.g., [30]). 

In this appendix, we will employ both representations in the capital investment decision 

processes. Given these mathematical definitions of risk, the rest of model development is as 

follows: 

In this appendix, the price of electricity is assumed to be a discrete random variable. 

Employing this random variable, we then obtain the conditions under which a generation unit 

may be temporarily shut down based on profitability. Next, we derive the mathematical 

expressions for the mean of the total profit and the variance of the total profit. Finally, we 

formulate a mean-variance model that minimizes the variance of the total profit subject to the 

minimum acceptable total profit requirement. 
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We then proceed to point out a key limitation of the mean-variance model, and 

propose a weighted mean minus standard deviation model that alleviates this limitation. In 

this model, an objective function for maximizing the profit while minimizing the variance is 

formulated. To assign priority weights on the profit relative to the variance, we employ the 

analytical hierarchy process (AHP). Via numerical examples, we briefly compare the mean-

variance model with the weighted mean minus standard deviation model. 

The organization of this appendix is as follows. In Section B.2, we present the mean-

variance model, hi Section B.3, we formulate a weighted mean minus standard deviation 

model. Section B.4 provides the comparison of the mean-variance model and the weighted 

mean minus standard deviation model. Concluding remarks and comments on future research 

are provided in Section B.5. Finally, we note that, throughout this appendix, we will use the 

terms of "generation unit" and "project" interchangeably. 

B.2 A Mean-Variance Model 

In this section, we first present the conditions under which a generation unit may be 

temporarily shut down based on profitability. Employing these conditions, next, we 

formulate mathematical expressions for the expected (i.e., mean) total profit and the variance 

of the total profit for generation expansion planning projects. Finally, a mean-variance 

model is established. 

B.2.1 Shutdown and Operating Conditions 

We first define the notations used in this section. 

Notation: 

j =index of generation units, 
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t = index of periods, t=l,...,T 

Pjt = discounted per unit selling price of the energy from generation unit j in 

period t ($/kWh). It is assumed to be a discrete random variable that has a 

price level of amJt with probability amj[ for Jt. Pjis are assumed 

to be independent over j and t. M Jt represents the total number of possible 

prices (states) based on general economic conditions, levels of competition, 

etc. for generation unit j in period t. 

dji(Pjt) = energy sold by generation unit j in period t, a function of PJt (kWh) 

Cjt = discounted per unit variable cost of the energy of generation unit j in period 

t ($/kWh) 

fjt = discounted fixed cost of operation for generation unit j in period t ($) 

dpjt = discounted depreciation expense for generation unit j in period t ($) 

dbjt = discounted annual loan repayment of debt for generation unit j in period t ($) 

As the electric power industry moves away from a regulated monopoly toward 

competition, the price of electricity can not be deterministically decided by a utihty. Instead, 

the price will be determined by market competition. For the utihty, therefore, the price is a 

random variable with several possible prices ( amjt *s) and their corresponding probabilities 

( amj['s) depending upon the general economic conditions, levels of competition, etc. 

From these definitions, if generation unit j operates in period t, the revenue is given 

by Pjt* dJt(Pjt) and the cost is given by cJt* djt(Pj,) +fjt + dpjt + dbJt. Therefore, the 

corresponding profit is given by Pjt* djt(Pjt) - cJt* djt{Pjt)-fJt - dpjt - dbJt. 
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On the other hand, if the price gets too low, the utihty may temporarily shut down a 

generation unit. In this section, we will assuime that each temporary shutdown lasts one 

period. If generation unit j gets temporarily shut down during period t, the revenue is given 

by zero and the cost is given by dpjt + dbJt. Therefore, the corresponding profit is given by -

dpjt - dbjt. 

Now, we assume that the utility will temporarily shut down a generation unit for one 

period based on the level of profit. We defime the desired minimum profit to be fi jt for 

generation unit j in period t. Therefore, if the profit is greater than or equal to j3]t, then 

generation unit j will operate in period t. Om the other hand, if the profit is less than f3jt, 

then generation unit j will be shut down in period t. 

We note that (3jt can be negative (i.e., even if the profit is negative, the utility may 

still operate, especially when the negative aimount is not substantial). Now, we define the 

profit from generation unit j in period t under shutdown and operating conditions by 

xjt (Pjt ) = Pjt * djt (Pjt ) - Cjt * dJt (Pjt ) - fjt — dp Jt - dbJt 

if Kjt (Pjt ) = Pjt * d jt (Pjt ) - Cjt * dJt (PJt ) - fJt - dp j, - dbJt > PJt 

= -dPjt — dbJt 

if Xjt (pjt ) = Pjt * djt (Pjt ) - Cjt * dj, (Pj, ) - fjt - dp jt - dbJt < pjt 

B.2.2 Mean and Variance of the Total Prrofit 

Based on equation (B.l), an expression for the expected profit for generation unit j is 

given by 
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f=I 
T 

= ^ (Prob {generation unit j is operating in period t} * 
r=l 

Profit of generation unit j in period 11 operating (B.2) 

+ Prob {generating unit j is temporarily shut down in period t} * 

Profit of generation unit j in period 11 shut down) 

To develop the expected total profit (mean of the total profit) for generation 

expansion planning projects, first let AJt be the set of indices of prices at which generation 

unit j will operate in period t. Ajt is the complement of Ajt, and it denotes the set of indices 

of prices at which generation unit j will be shut down. Namely, 

Ajt = (m I "my, * dJt (amJt ) - cJt * djt (amjt ) - f jt - dpjt -dbjt> J3Jt} 

Aft = {m | amj! * dj( (amjt ) - cJt * djt (amJt ) - fJt - dpJt - dbjt < (3jt} 

We let the binary variables xj be 1 if generation expansion planning project j is 

selected and 0 otherwise. We also assume that all selected projects are operational starting 

from period 1. Based on equation (B.2), we have the following mathematical expression for 

the expected total profit (mean of the total profit): 

= I>y *£*[*.» <•?„)] 
/= I (=1 

= IX;*ZŒ "my, * ("my, * ("my, ) ~ cJt * dJt (amJl ) - fjt - dpjt - dbjt ) 
y=l t~\ meAjt 

+ *i-dPjt ~dbJt)} 
meAji 

Since we assume that the price of electricity is a random variable, the profit is also a 

random variable. Because the profit will have variance that represents the level of risk, it is 



www.manaraa.com

131 

highly desirable to consider the variance of the total profit in any capital budgeting decision 

process. We have the following mathematical expression for the variance of the total profit: 

7=1 t=I 

= É4 *Z{£K>(p»)]2 -[£(^,(^,))]2} 
y"=l t=l 

= am/r * ("my, * ("myï ) ~ C„ * d jt ("my, ) ~ /y, ~ dPjt ~ & jt Y 
/=l f=l meAjt 

+ Y.amit *(~dPjt ~dbJt)2 

m<=Af, 

- [ Z amy> * ("my, * d jt ("my, ) ~ Cy, # dJt ("my, ) " /y, ~ dP jt ~ & jt ) 
msAj, 

+ IX/. *HP/. -d*,,)]2} 

B.2.3 A Mean-Variance Model 

In this subsection, we present the mean-variance model, which is conceptually similar 

to the mean-variance portfoho selection in Markowitz [35]. In this model, we minimize the 

variance of the total profit subject to minimum acceptable total profit requirement. 

Let F be the minimum acceptable level of profit requirement. Then, a mean-variance 

model is formulated as follows: 

Min V[k\ 

Subject to 

E[7t] > F 

where the decision variables are over which generation units will be selected. 
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B.2.4 A Numerical Example 

In this example, there are three generation expansion planning projects and the 

planning horizon is one period. The hypothetical data are listed below. 

Data for project 1 : 

tifu(P„)=l,000-5*P11 

aux = 70 with probabilityam =0.2,dn(70) = 650 

Pn = • a2n = 80 with probability a2U = 0.6,</u(80) =600 > 

a j n  =90 with probability a3ll = 0.2,dn(90) = 550 

cu = 30;/n = 2,000; dpn =2,000;dbn = 2,000; ySu =-1,200 

Data for project 2: 

d21(P2l) = 800-2* P21 

al2l = 60 with probabihty al2l = 0.2 ,d2l (60) = 680 

a221 = 80 with probability = 0.4, d21 (80) = 640 

a32l =100 with probability a32l = 0.4, d2l (100) = 600 

c21 =50;/21 =1,000; dp21 =2,000;db2X =2,000;/32x =-800 

Data for project 3: 

J31(P3I) = 900-15*P31 

am = 40 with probabihty a131 = 0.5, dn (40) = 300 

a23! = 50 with probability*^, = 0.3,d3x (50) =150 

a331 = 60 with probabihty a33l = 0.2, <i31 (60) = 0 

c31 =35 ;/31 = 1,000; dp3l = 500;cf631 = 500; /?31 =-200 

From these data, we can verify An = {1,2,3}, A21 = {1,2,3}, and A31 = {2} while 

A x x  =  t p ,  A 2 l  = <j), and v43^ = {1,3}. It can be verified that the expecetd profit for projects 1, 2, 

Pzi — 

and 3 is 24,000; 16,040; and -625, respectively. It can also be verified that the variance of 

profit for projects 1, 2, and 3 are 4,960,000; 74,022,400; and 328,125, respectively. 
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Therefore, we have a binary integer programming formulation for the mean-variance 

model as follows: 

Mm 4960000x,2 + 74022400^ + 328125%, 
^1 » ^2 » ^3 

Subject to 

24000%, + 16040x2 -625X3 >F 

W e  note that the variables xf, x\, and x] can be equivalently represented by 

xx ,x2, and x3, resulting in the same optimal solution. Hence, employing the LINDO 

software package (LINDO Systems Inc. [29]), when F — 20,000, then the optimal solution is 

x, = l,x2 =0,x3 =0 (i.e., 4,960,000 is the smallest variance among feasible solutions). 

Hence project 1 is selected. The corresponding profit is 24,000. On the other hand, when F 

= 40,000, then the optimal solution is x, =l,x2 =l,x3 = 0. Hence projects 1 and 2 are 

selected. The corresponding profit and variance are 40,040 and 78,982,400, respectively. 

We observe that, by doubling the minimum acceptable level of profit requirement from 

20,000 to 40,000, the optimal variance has substantially increased from 4,960,000 to 

78,982,400. 

B.3 A Weighted Mean Minus Standard Deviation Model 

The advantage of the mean-variance model is its simplicity. By considering 

xf, x2, and x\ by xt, x2, and x3, the quadratic objective function of the mean-variance 

model becomes linear and can be easily solved. However, one can observe a key limitation 

of the mean-variance model in the fixed minimum acceptable level of profit requirement. 
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This limitation can be explained in the following hypothetical example. Suppose there are 

two feasible solutions. Solution 1 is the optimal solution with the minimum variance with 

the profit level at exactly F (the minimum acceptable level of profit requirement). Solution 

2, on the other hand, has a slightly higher variance with substantially higher profit relative to 

F. By the design of the mean-variance model, solution 2 will not be selected. This, in 

practice, however, may not be a reasonable capital budgeting decision process. 

To overcome this limitation of the mean-variance model, we propose a weighted 

mean minus standard deviation model as follows. 

For this new model, we observe first that the profit is desirable and should be 

increased while the variance is undesirable and should be decreased. Hence, a certain type of 

objective function that maximizes the profit while minimizes the variance would be highly 

desirable. The key question then becomes what weight to assign on the profit relative to the 

variance. This weight should directly address the possibility of trade-off between the profit 

and the variance (i.e., high profit with high variance vs. low profit with low variance). 

To assign weights, we first employ the standard deviation to represent the variance. 

In this way, the terms of the objective function (the profit minus the standard deviation) will 

have the same unit. Next, for relative (or priority) weights of the profit vs. the standard 

deviation, we employ the analytic hierarchy process (AHP) as follows. 

B.3.1 Priority Weights by AHP 

AHP (see e.g., Saaty [43]) is an effective way to determine relative priority weights. 

For this purpose, we first need to define the goal and the criteria in an AHP diagram. In this 

AHP diagram, the goal is to determine the priority weights, and the criteria are the standard 

deviation and mean of total profit. Next, we need to construct a hierarchy based on the 
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Goal 

Criteria 

Determining priority weights 

Standard 
deviation of 
total profit 

Mean of total 
profit 

Figure B.l An AHP diagram for the mean vs. standard deviation 

criteria of the standard deviation vs. the mean. The hierarchy for our model is shown in 

Figure B.l. We note that a hierarchy can be constructed with more criteria and/or subcriteria. 

Based on the diagram in Figure B.l, by going through the AHP, we can obtain the 

priority weights. The actual process of AHP will be explained via a numerical example in 

the next subsection. We now proceed to the weighted mean minus standard deviation model. 

B.3.2 A Weighted Mean Minus Standard Deviation Model 

Let Wi be the priority weight of the mean and wz be the priority weight of the standard 

deviation from the AHP. Then, a weighted mean minus standard deviation model is 

formulated as follows: 

Max w, *E[ t t] -  W2  *^jv\k] 

where the decision variables are over which generation units will be selected. 

B.3.3 A Numerical Example 

In this subsection, we illustrate some of the features of our model via a numerical 

example. First, in order to determine the priority weights, pairwise comparisons are 

necessary. The pairwise comparisons between the standard deviation and the mean can be 

organized into a pairwise comparison matrix. The pairwise comparison matrix consists of 
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e,yS. e,j is a number representing the level of importance of criterion i relative to criterion j. 

There are several important characteristics in the pairwise comparison matrix: When 

compared with itself, each criterion has equal importance. Therefore, the diagonal elements 

of the pairwise comparison matrix are all equal to 1. Moreover, the lower triangle numbers 

of the matrix are the reciprocal of the upper triangle numbers (i.e., e~ =1/ e-). All numbers 

in the matrix are positive. 

For example, let us assume that the standard deviation of the total profit is two times 

as important as the mean of the total profit. Then, a pairwise comparison matrix is formed as 

shown in Table B.l. 

Table B.l Structure of pairwise comparison matrix 

Standard deviation Mean 
Standard deviation 1 2 
Mean 1/2 1 

After the pairwise comparison matrix is formed, we can calculate the priority weights 

of criteria. First, we divide each e,y of theyth column by the sum of e,/s of the/th column. 

Then, we add all e,y's in each resulting row. Finally, the sum is divided by the number of 

columns. Via this normalization, we obtain the priority weights of criteria (see e.g., Son and 

Min [46]). 

Therefore, from Table B.l, we first devide 1 and 1/2 of the first column by 3/2, which 

is the sum of 1 and 1/2. We obtain 2/3 and 1/3 in the first column of Table B.2. Similarly, 

we divide 2 and 1 of the second column in Table B.l by 3, which is the sum of 2 and 1. We 

obtain 2/3 and 1/3 in the second column of Table B.2. Next, we calculate the sum of each 
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row in Table B.2. The sum of the first row in Table B.2 is equal to 4/3 (1.333). The sum of 

the second row in Table B.2 is equal to 2/3 (0.667). Finally, we divide 1.333 by 2, which is 

the number of columns, and obtain 0.666. We note that 0.666 is the priority weight for the 

standard deviation of the total profit (i.e., = 0.666). Similarly, we divide 0.667 by 2 and 

obtain 0.334. We note that 0.334 is the priority weight for the mean of the total profit (i.e., 

wi = 0.334). 

Table B.2 Priority weights of criteria 

Standard dev. Mean Row sum Priority weights 
Standard dev. 2/3 2/3 1.333 0.666 
Mean 1/3 1/3 0.667 0.334 

We note that, in this section, we do not address the issue of consistency in 

comparison matrices because the data are hypothetical. In practice, with real data, one needs 

to address this issue (see e.g., Saaty [43]). 

Given these priority weights, recall that the mean and variance of each project,/ = 

1,2,3, are provided in Subsection 2.2.4. Hence, the corresponding weighted mean minus 

standard deviation model is as follows: 

Max 
0.334 *(24000%, +16040x2 -625x3) 

i %2 » •*" 3 

- 0.666 * 4960000x1 +740224004 + 328125** 

where xl,x2,x3 are binary integers. 

This binary nonlinear integer programming problem is solved by enumeration, and 

the corresponding global optimal solution is: x\ = 1, xz = 1, and%3 = 0. i.e., projects 1 and 2 

are selected. The corresponding objective function value is 7454.48. We note that LINGO 
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software package (LINDO Systems Inc. [29]) can solve binary nonlinear integer 

programming problems. However, by LINGO, only a local optimum can be identified. 

B.4 Comparison of Results 

The optimal solution for the mean-variance model when F = 20,000 is 

xx — l,x2 = 0,x3 = 0. The corresponding mean and variance of the total profit are 24,000 and 

4,960,000, respectively. We do note that there may be feasible solutions that have 

substantially higher profits and slightly higher variances than this optimal solution (which is 

a key limitation of the mean-variance model). 

The optimal solution for the weighted mean minus standard deviation model is 

xx = 1, x2 =l,x3 = 0. The corresponding mean and variance of the total profit are 40,040 and 

78,982,400, respectively. We first observe that both mean and standard deviation are 

considered in the objective. Hence, it is now possible that the feasible solution that has 

substantially higher profit and slightly higher variance of the previous case becomes the 

optimal solution. We also observe that the priority weights would depend on a particular 

decision maker's degree of risk-aversion, i.e., if the decision maker is more (less) risk-

averse, then the priority weight for the standard deviation will be higher (lower). 

B.5 Concluding Remarks 

In this appendix, we first presented the conditions under which a generation unit may 

be temporarily shut down based on profitability. From these conditions, we presented the 

mathematical expressions for both mean and variance of the total profit. Then, we 

formulated a mean-variance model. From this model, we selected the projects that would 
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minimize the variance of the total profit subject to the minimum acceptable total profit 

requirement. 

Next, we introduced how to obtain priority weights for the mean and standard 

deviation of the total profit via the AHP. By assigning these priority weights to the mean and 

the standard deviation, we formulated a weighted mean minus standard deviation model. 

Illustrative numerical examples were provided for both mean-variance model and weighted 

mean minus standard deviation model. Finally, comparison of the results of the numerical 

examples was presented. 

For future research, it would be worthwhile to examine various economic and 

financial conditions under which the mean-variance model (or the weighted mean minus 

standard deviation model) is more appropriate. 
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