IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

2001

Generation planning for electric power utilities
under market uncertainties: a rea options approach

Chung-Hsiao Wang

Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

0 Part of the Business Administration, Management, and Operations Commons, Economics
Commons, Industrial Engineering Commons, and the Oil, Gas, and Energy Commons

Recommended Citation

Wang, Chung-Hsiao, "Generation planning for electric power utilities under market uncertainties: a real options approach " (2001).
Retrospective Theses and Dissertations. 460.
https://lib.dr.iastate.edu/rtd /460

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/460?utm_source=lib.dr.iastate.edu%2Frtd%2F460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMi directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Generation planning for electric power utilities under market uncertainties:

A real options approach

Chung-Hsiao Wang

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Major Professor: K. Jo Min

Towa State University
Ames, Jowa

2001



UMI Number: 3003276

®

UMI

UMI Microform 3003276

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Mi 48106-1346



11

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of
Chung-Hsiao Wang

has met the dissertation requirements of Jowa State University

Signature was redacted for privacy.

Major Professor

Signature was redacted for privacy.

For the Major Program

Signature was redacted for privacy.

For the Graduate Cbollege



TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
ACKNOWLEDGEMENTS
ABSTRACT
CHAPTER 1.INTRODUCTION
1.1 Introduction
1.2 Organization of the Dissertation
1.3 Summary of Contents
1.4 Introduction to Traditional Generaﬁon Planning Models
1.5 Introduction to the Theories of Real Options
1.6 Literature Review
1.6.1 Traditional Generation Planning Models
1.6.2 Real Options Models

CHAPTER 2. GENERATION PLANNING FOR MULTIPLE-PROJECT
SINGLE-OPTION CASES

2.1 Introduction

2.2 Black-Scholes Option-Pricing Model

2.3 Black-Scholes Option-Pricing Table

2.4 An Exbanded NPV Maximization Model
2.5 An Example

2.6 Concluding Remarks

12

12

13

15

17

21

25



iv
CHAPTER 3. A SINGLE-PROJECT MULTIPLE-OPTION MODEL

FOR GENERATION PLANNING
3.1 Introduction
3.2 Real Options for Generation Planning
3.3 Geometric Brownian Motion
3.4 Binomial Lattice Model

3.4.1 Net Cash Flows of the Options
3.5 Other Numerical Method for the GBM
3.6 Dynamic Programming
3.7 Numerical Example

3.7.1 Input Data

3.7.2 Solution
3.8 Concluding Remarks

CHAPTER 4. A MULTIPLE-OPTION MODEL WITH TWO CORRELATED
PROJECTS FOR GENERATION PLANNING

4.1 Imtroduction

4.2 Geometric Brownian Motion

4.3 Binomial Lattice Model

4.4 Four-Branch Lattice Model

4.5 Values of Options

4.6 Role of Correlation Coefficient
4.6.1 Numerical Example

4.7 Dynamic Programming

4.8 Numerical Example

27

27

28

30

31

34

35

35

36

36

39

40

41

41

43

47

49

51

52

53

56



4.8.1 Input Data
4.8.2 Solution
4.9 Concluding Remarks

CHAPTER 5. A MULTIPLE-OPTION MODEL WITH MULTIPLE
CORRELATED PROJECTS FOR GENERATION PLANNING

5.1 Introduction

5.2 Lattice Model for Three Correlated Projects

5.3 Lattice Model for N Correlated Projects

5.4 Comparisons with Other Approximation Models

5.5 Roles of Correlation Coefficients

5.6 Sequential Strategic Options

5.7 A Numerical Example for Three Correlated Projects
5.7.1 Solution

5.8 Concluding Remarks

CHAPTER 6. GENERATION PLANNING WITH OUTAGE COSTS

6.1 Introduction

6.2 Quantification Approaches for Customer Outage Costs
6.2.1 Difficulties in Reconciling Different Approaches
6.2.2 A Single Approach for All Customers: Proxy Approach
6.2.3 Wage Rate Method for Residential Customers

6.2.4 Backup Power Cost Method for Industrial
and Commercial Customers

6.3 Expected Amount of Outage

6.4 Expected Outage Cost

56

59

60

61

61

62

68

69

70

73

79

82

&3

85

85

86

88

89

91

92

94

96



6.5 The General Model
6.6 Numerical Example

6.6.1 InputData

6.6.2 Optimal Solution
6.7 Concluding Remarks

CHAPTER 7. COMPARISONS OF REAL OPTIONS APPROACH VS.
TRADITIONAL APPROACH FOR GENERATION PLANNING

7.1 Imtroduction

7.2 Generation Planning Process Based on the Real Options Approach vs.
the Traditional Approach

7.3 Comparisons Based on Decision Variables
7.4 Comparisons Based on Objective Function
7.5 Comparisons Based on Constraints
7.6 Comparisons Based on Competition Aspects
7.7 Comparisons Based on Usage Aspects
7.8 Conclusions
CHAPTER 8. CONCLUSIONS
8.1 Summary
8.2 Future Research
8.2.1 Strategic vs. Tactical Options
8.2.2 Transmission Planning
8.2.3 Other Stochastic Models

8.2.4 Other Approximation Models

97

103

104

107

108

109

109

110

114

114

115

115

116

117

118

118

121

121

122

123

123



APPENDIX A. RISK-NEUTRAL PROBABILITY 124
APPENDIX B. GENERATION PLANNING VIA A

MEAN-VARIANCE APPROACH: PROFIT VS. RISK 126

B.1 Introduction 126

B.2 A Mean-Variance Model 127

B.2.1 Shutdown and Operating Conditions 127

B.2.2 Mean and Variance of the Total Profit 129

B.2.3 A Mean-Variance Model 131

B24 A Numerical Example 132

B.3 A Weighted Mean Minus Standard Deviation Model 133

B.3.1 Priority Weights by AHP 134

B.3.2 A Weighted Mean Minus Standard Deviation Model 135

B.3.3 A Numerical Example 135

B.4 Comparisons of Results 138

B.5 Concluding Remarks 138

REFERENCES 140



Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2
Figure 5.3
Figure 7.1
Figure 7.2

Figure B.1

LIST OF FIGURES

Binomial lattice for underlying asset

Binomial lattices for options

Binomal lattices fori=0,1,2,3,4,5,6

Optimal operating options for a 3-period generation planning project
Binomial lattice model

Four-branch lattice model

Value of the option to expand generation unit 1

3-period four-branch lattice

Eight-branch lattice for three underlying assets

Four-branch [attices for three pairs of correlated underlying assets
Evolution of three underlying assets

Generation planning process based on the real options approach
Generation planning process based on the traditional approach

An AHP diagram for the mean vs. standard deviation

32

34

38

39

47

49

57

64

65

76

111

113

135



Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table B.1

Table B.2

LIST OF TABLES

Black-Scholes option-pricing table for the value of a European call option

Net cash flows for Project 1

Net cash flows for Project 2

Net cash flows for Project 3

Expanded NPV for each project

Project data

Values of underlying assets in period 3
Potential power plants

Budget and capacity constraints

Probability for each branch

Residential consumer survey results (Cr$ per hour)
Average outage cost

Outage data

Data for existing generation units

Data for generation expansion planning projects
Periodic data

Structure of pairwise comparison matrix

Priority weights of criteria

22

22

22

23

58

77

80

80

81

91

94

104

105

105

106

136

137



ACKNOWLEDGEMENTS

First of all, I would like to express my sincere appreciation and thanks to my major
professor, Dr. K. Jo Min, for his advice, guidance, and patience through all phases of my
graduate study and the preparation of this dissertation.

I would also like to thank Dr. S. Keith Adams, Dr. Tim Van Voorhis, Dr. Janet
Peterson, and Dr. W. Robert Stephenson for their helpful comments, feedbacks, and
suggestions regarding my research as well as their participation on my committee. I am also
grateful to Dr. Ananda Weerasinghe for his helpful comments.

I would like to thank Dr. K. Jo Min, ISU Electric Power Research Center,
MidAmerican Energy, and Electric Power Research Institute (EPRI) for their financial
supports.

My warmest thanks go to my mom, Show-Yueh Lin, my dad, Chih-Chun Wang, my
sister, Hong-Hsiao Wang, and my fiancee, Li-Ming Liu. Without their endless love,
understanding, and encouragement, I could not have finished my graduate study.

This dissertation is dedicated to my mom, who passed away on May 27, 1998.



ABSTRACT

The generation business in the U.S. is currently undergoing a transition from a
regulated monopoly toward an uncertain, competitive market. Under the competitive market,
the price of electric power as well as the corresponding revenue may be much less certain
than before. These market uncertainties have increased the significance of two critical
factors in generation planning. These factors are financial risks and managerial flexibilities.

In order to quantitatively and objectively address these two factors in generation
planning, in this dissertation, we design and analyze a series of mathematical models based
on the real options approach for generation planning. Hence, this dissertation can be viewed
as a comprehensive study of the real options approach in generation planning,.

The dissertation begins with a simple multiple-project single-option model based on
the Black-Scholes option-pricing formula. This is followed by a single-project multiple-
option model based on geometric Brownian motion process, binomial lattice, and backward
dynamic programming.

Next, we design and analyze sophisticated multiple-project multiple-option models
where the market values of the projects are assumed to be correlated. As before, we employ
the backward dynamic programming over the lattice to determine the optimal options for the
multiple projects and the corresponding values of the investment. Also, we investigate the
roles of the correlation coefficients among projects in decision makir.g and the value of an
option.

In addition, we construct and analyze a traditional generation planning model that

incorporates forced customer outage costs and forced utility outage costs. By incorporating



forced customer outage costs, we attempt to take customer satisfaction level into account.
We compare and contrast the models from the real options approach as well as the traditional
approach.

We hope that the results of this dissertation will encourage utilities to effectively
utilize the real options approach in generation planning under market uncertainties. As this
approach can address the financial risks and managerial flexibility while the classical
discounted cash flow approaches can not, we also hope that generation planning can be

performed more quantitatively and objectively under the new economic uncertainties.



CHAPTER 1. INTRODUCTION

1.1 Introduction

The electric power industry in many parts of U.S.A. 1s undergoing a radical change
from a regulated monopoly toward market competition. When a utility is a regulated
monopoly, it has a guaranteed fair rate of return in exchange for an obligation to serve. In
market competition, however, the utility may not expect any guarantee of fair rate of return.

In such a case, the increased degree of uncertainty has a substantial impact on
generation planning aspect of the electric utility. For example, if market conditions become
unfavorable (e.g., a lower electric power price), then a generation unit that has been
profitable may no longer remain so. This uncertainty implies substantial financial risks in
generation planning.

We note that the generation aspect is an important operation for numerous utilities.
In 1997, the amount of power generated in U.S.A. was 3123 billion kWh’s, resulting in $215
billion worth of retail sales (see e.g., U.S. Bureau of the Census, 1999). Therefore, under the
new economic uncertainties such as price uncertainties, it is highly desirable to help utilities
in their decision making process for generation planning.

Under the new economic uncertainties, the two factors in decision making that have
become much more significant are: financial risks and managerial flexibility (e.g., the values
of strategic options). For example, under uncertain, competitive market conditions, expected
values such as expected profit and expected rate of return have become much less meaningful
without the corresponding variances (i.e., financial risks). In addition, under uncertainty, the

realization of cash flows may differ significantly from what a utility may have expected



initially. As new information arrives and uncertainties about market conditions are resolved,
the utility may adjust its strategy to capture future opportunities. Therefore, the managerial
flexibility is also an important factor in decision making.

The traditional generation planning models, however, may not be directly applicable
under the new economic uncertainties because they often have been developed under the
regulated monopoly assumption and financial risks and managerial flexibility have just not
been the most significant factors.

Furthermore, the traditional net present value (NPV) approach selects the projects that
produce positive NPV. However, the traditional NPV is inadequate to properly capture a
utility’s flexibility to adapt and revise later decisions in response to unexpected market
development. For example, the traditional NPV approach assumes that a new power plant
will be operated continuously at a given initial scale until the end of its expected useful life.

In order to quantitatively and objectively address the two significant factors (i.e.,
financial risks and managerial flexibility) in generation planning, we utilize the real options
approach. The real options approach can capture both financial risks and managerial
flexibility in a mathematical model.

In this dissertation, we design and analyze a series of mathematical models based on
the real options approach for generation planning. Hence, this dissertation can be viewed as a
comprehensive study of the real options approach in generation planning. The comprehensive
dissertation begins with elementary models and analyses based on the real options theories to
generation planning. This is followed by more sophisticated models and analyses developed
by us. Finally, to enhance relevance, various economic and cost data as well as illustrative

numerical examples are presented.



The major contributions of this dissertation include the following. First, we develop
comprehensive real options models for generation planning. By comprehensiveness, we
mean that, with respect to the number of projects and options, we develop models that can be
applied to different generation planning problems such as multiple-project single-option and
multiple-project multiple-option problems. Second, we extensively study the strategic
decision making based on the real options approach when a utility has multiple correlated
projects. By correlation, we mean that the market values of the completed power plants are
correlated. Third, we construct a lattice model to approximate multiple correlated geometric
Brownian motion processes. Relative to the existing literature, our approximation model is
more accurate as the true geometric Brownian motion process gets more non-linear. Fourth,
we investigate the roles of correlation coefficients in decision making and the value of an
option, which provides interesting managerial insights (e.g., the increase in the value of a
correlation coefficient will decrease the value of an option). Finally, we compare and
contrast the generation planning processes based on the real options approach and the
traditional approach with respect to modeling, competition, and usage aspects.

With this dissertation, we hope that utilities may effectively and efficiently utilize the
real options approach in generation planning under market uncertainties. As this approach
can address the financial risks and managerial flexibility while the classical discounted cash
flow approaches can not, we also hope that generation planning can be performed more
quantitatively and objectively under the new economic uncertainties.

The rest of Chapter 1 is organized as follows. In Section 1.2, we show how the entire
dissertation is organized. In Section 1.3, the summary of contents in each chapter of the

dissertation is presented. An introduction to the traditional generation planning models is



provided in Section 1.4. Meanwhile an introduction to the theories of real options is
presented in Section 1.5. Finally, in Section 1.6, we review the existing literature in

traditional generation planning models and real options models.

1.2 Organization of the Dissertation

This dissertation consists of 8 chapters. Chapters 2, 3, 4, and 5 provide models based
on the real options approach. Chapter 2 develops a multiple-project single-option model.
Chapter 3 describes a single-project multiple-option model where the optimal options for a
project are determined by backward dynamic programming.

Chapter 4 presents a two-project multiple-option model where the two projects are
correlated, and investigates the role of the correlation coefficient in both decision making and
value of an option. Chapter 5 extends the two-project multiple-option model to a multiple-
project multiple-option model where the multiple projects are correlated. In Chapter 6, a
revised traditional generation planning model that incorporates customer outage costs and
utility outage costs is provided for comparison purposes to the real options models. Chapter
7 compares the real options approach to the traditional approach for generation planning.

Finally, Chapter 8 summarizes this dissertation and provides directions for future research.

1.3 Summary of Contents
In Chapter 2, we develop a multiple-project single-option model. In this model, each
project has an option to expand its capacity. The value of a project is represented by the

expanded NPV which consists of traditional NPV and the value of the option. Then, we



select the optimal set of projects by maximizing the expanded NPV of selected projects
subject to budget constraints and option availability constraints.

The multiple-project single-option model would be useful when there is essentially
one dominant option for each project. However, when there are multiple options for a
project, this model may not be applicable. For such cases, in Chapter 3, we develop a single-
project multiple-option model. In this model, a generation planning project represents a
sequence of options. The selection of an option in one period will affect the selections of
options in subsequent periods. Therefore, we employ backward dynamic programming over
a binomial lattice to determine the optimal options for a project and the corresponding project
value.

In the single-project multiple-option model, a utility determines which option to be
exercised based on market condition. Market condition is represented by the market values
of a completed power plant, which can be modeled as a geometric Brownian motion (GBM)
process. To avoid complex partial differential equations that may not have analytic
solutions, we apply the binomial lattice model to approximate the GBM process.

The single-project multiple-option model is useful if there is essentially one important
project to be considered. However, when there are multiple projects to be considered, this
model may not be applicable. As a first attempt to model multiple-project problems, in
Chapter 4, we develop a two-project multiple-option model where the market values of the
two completed power plants are correlated. By employing backward dynamic programming
over a four-branch lattice that approximates the combination of two correlated GBM

processes, we determine the optimal options for the two projects and the corresponding value



of the investment. Furthermore, we investigate the roles of the correlation coefficient in the
value of an option and decision making.

Next, in Chapter 5, we extend the two-project multiple-option model to a multiple-
project multiple-option model. First, we approximate the combination of the multiple
correlated GBM processes by a multiple-branch lattice. Then, as in Chapter 4, we employ
backward dynamic programming over the lattice to determine the optimal options for the
multiple projects and the corresponding value of the investment. Also, we investigate the
roles of the correlation coefficients among projects in the value of an option and decision
making.

Thus far, we have discussed the real options approach for generation planning. We
now proceed to discuss the traditional approach for generation planning. In Chapter 6, we
provide a traditional generation planning model for comparison purposes to the real options
models. In this traditional model, we incorporate both forced utility outage cost and forced
customer outage cost. By including the forced customer outage cost, we attempt to take the
customer satisfaction level into account. Various comparisons between the real options

approach and the traditional approach for generation planning are made in Chapter 7.

1.4 Introduction to Traditional Generation Planning Models

In general, the purpose of the traditional generation planning models is to determine
the generation units to be constructed and the amount of power to be produced while the total
cost including fixed and production cost to a utility is minimized. The cost-minimization
objective functions in those models are subject to physical constraints such as demand,

capacity, and reserve margin constraints. This setting may be slightly changed according to



the involvement of other operations. For example, if demand side operations such as
scheduled outage during peak hours are involved, then the utility also wants to determine the
amount of scheduled outage.

However, as the electric power industry is moving toward an uncertain, competitive
market, the traditional models should be revised. One way to revise the traditional models is
to include the outage costs of customers. In a competitive environment, customer
satisfaction with the power supply may greatly. influence a utility’s competitive position.
Customer satisfaction level can be represented by the outage costs of customers. Therefore,
the inclusion of the outage costs of customers in a generation planning model will indirectly

reflect the current competitive environment.

1.5 Introduction to the Theories of Real Options

Under competition, in addition to the consideration of risks, the incorporation of a
utility’s flexibility in generation planning is also highly desirable. The options approach can
quantify the values of flexibility to utilities and support the utilities’ project planning and
management decisions under uncertainties more objectively.

Basically, the theory of options is a subfield of finance. Options are classified into
two types: calls and puts. Call options give the option holder the right to buy a fixed number
of shares of a traded stock for a fixed price on or before a given date. Put options give the
holder the right to sell the stock for a fixed price on or before a given date. If the option may
be exercised before maturity, it is called an American option. If the option can be exercised

only at maturity, it is called a European option.



An option is a derivative asset of an underlying asset. Therefore, the value of an
option depends on the value of the underlying asset. For example, the underlying asset of a
stock call/put option is the stock. If the value of the stock increases, then the value of the call
increases and the value of the put decreases.

There exists an analogy between financial options and opportunities for corporate
investments. The opportunities for corporate investments can be viewed as financial
opportunities because the corporates have the right, but not the obligation, to acquire the
assets of a business. Such opportunities for corporate investments are referred to as real
options.

Based on the real options theory, we can quantitatively determine the value of an
option. This will provide a more accurate estimate of the value of a project when the project
has operation flexibility. We believe that this enhanced understanding of the values of
projects will provide better decision support in project selection and management under
uncertainties. For example, for a project with multiple options at each decision time point,
we can determine the optimal decisions under different market conditions by maximizing the
value of a project over the planning horizon (i.e., sequential decision making under

uncertainties).

1.6 Literature Review
In this section, we review the literature in traditional generation planning models and

real options models that are relevant to this dissertation.



1.6.1 Traditional Generation Planning Models

Anderson [4] reviews different types of mathematical programming models that have
been used for generation planning. Ammons and McGinnis [2] develop a comprehensive
generation expansion planning model to determine the generation units to be constructed and
the production level of each new and existing generation unit. Belgari and Laughton [8] and
Sawey and Zinn [45] develop models for large-scale generation planning for the combination
of generation and transmission operations. We note that these papers only focus on relatively
easy-to-quantify factors such as fixed and production cost.

A few studies in the literature have considered hard-to-quantify factors such as
customer outage cost and utility outage cost. Hobbs [20] incorporates scheduled utility
outage cost and scheduled customer outage cost in the objective function of a model (i.e., the
amount of the scheduled outage is a decision variable). Wang and Min [54], however,
consider forced utility outage cost (cf. scheduled outage cost of [20]) as a component of the
total cost to a utility. We note that unlike scheduled outage cost, the forced utility outage
cost may be substantial.

In Chapter 6 of this dissertation, we extend Wang and Min’s generation planning
model by considering the forced customer outage cost in addition to the forced utility outage
cost. By including the forced customer outage cost, we take the customer satisfaction level
into account. Therefore, the competition in the electric power industry can be indirectly
reflected in the setting of a traditional generation planning model.

1.6.2 Real Options Models
Black and Scholes [10] develop a mathematical model called Black-Scholes option-~

pricing formula that prices the value of an option in traditional areas of finance. This is
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considered as a major development in options theories. Luehrman [33], on the other hand,
shows an analogy between financial options and opportunities for corporate investments.
Such opportunities for corporate investments are referred to as real options. Trigeorgis [51]
summarizes common real options as the option to defer, time-to-build option, option to alter
operating scale (e.g., t.o expand, to contract, to shut down and restart), option to abandon,
option to switch (e.g., outputs or inputs), and growth options.

Luehrman [33] considers a project to build a new large-scale chemical plant and the
project has an option to expand the plant’s capacity three years later. The value of the option
to expand can be obtained by using the Black-Scholes option-pricing table, which is
developed based on the Black-Scholes option-pricing formula. Then, the value of the project
is equal to the sum of the traditional NPV of the project and the value of the option. This
framework is applied to develop our multiple-project single-option model in Chapter 2. Via
our model, we select the optimal set of projects by maximizing the total value of the selected
projects subject to constraints such as budget requirements.

We note that Black-Scholes formula is insufficient in the cases of more sophisticated
models (e.g., multiple-project, multiple-option) because the underlying differential equations
become quite difficult to solve. A popular way to handle these sophisticated models is by
employing binomial lattice models (see e.g., [3]). Several papers apply the binomial lattice
model to determine the optimal sequential options for a project. Pickles and Smith [41]
apply the binomial lattice model to petroleum properties. Kelly [27] applies the same model
to mining properties. Teisberg [49] analyzes the construction stage of a generation planning
project using binomial lattice model. In her model, the plan to construct a power plant

provides options to proceed, to delay, and to abandon. In our single-project multiple-option
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model in Chapter 3, we extend the Teisberg’s model to include both construction stage and
operating stage of a generation planning project. By using the binomial lattice model, we
determine the optimal options for the project under different market conditions and the
corresponding project value.

In contrast to the single-project multiple-option models considered in Teisberg [49] or
in Chapter 3, a utility may consider multiple-project models. Namely, the utility may
evaluate multiple correlated generation planning projects simultaneously. For example, a
utility may consider a project for a potential new gas turbine power plant and a project for a
potential new wind power plant. However, few papers in the literature have addressed the
issue of correlated projects based on real options. The only paper of which we are aware is
for mutually exclusive R&D projects [15], which may not be an appropriate relationship for
generation planning projects. Based on this part of the literature review, in Chapter 5, we
have developed a four-branch lattice model for two correlated projects. In Chapter 6, we
have further extended the two-correlated-project model to a multiple-correlated-project

model.
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CHAPTER 2. GENERATION PLANNING FOR MULTIPLE-PROJECT SINGLE-

OPTION CASES

2.1 Introduction

In this chapter, we consider the following problem. Suppose there are multiple kinds
of generation units. Let a project be constructing a particular generation unit. Hence, we can
state that there are a mulitiple number of projects. Once a generation unit is constructed, then
we assume that there is an option to expand (for each generation unit constructed). Hence,
we can state that each project has a single option. We will refer to this problem as a
multiple-project single-option case.

Under this circumstance, the value of a project consists of the traditional NPV plus
the value of the option to expand. Hence, the value of a project is represented by an
expanded NPV. By maximizing the expanded NPV subject to budget constraints and option
availability constraints, we show how the optimal set of generation planning projects is
selected.

The rest of this chapter is organized as follows. In Section 2.2, the Black-Scholes
option-pricing model, which forms the basis for the multiple-project single-option model, is
presented. Moreover, in Section 2.3, we present the Black-Scholes option-pricing table
based on the aforementioned model, which is widely used in practice for simplicity. In
Section 2.4, we formulate an expanded NPV model as a mixed-integer linear programming
problem. In Section 2.5, we provide a numerical example illustrating the key features of our

model. Finally, concluding remarks are provided in Section 2.6.
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2.2 Black-Scholes Option-Pricing Model

As mentioned previously, the traditional NPV approach cannot properly reflect
utility’s flexibility to adapt and revise later decisions in response to unexpected market
developments. However, this does not mean that NPV should be discarded because it does
contain relevant revenue and cost information. Instead, NPV should be regarded as a
required input to an option-based, expanded NPV analysis. Suppose that a generation
expansion planning project (to construct a generation unit) has an option to expand its
capacity. Then, by the definition of expanded NPV in Luehrman [33], the value of the entire
project is given by:

Expanded NPV (entire project) = traditional NPV (Phase I assets) + present value of an
option (Phase II assets)

Phase I assets refer to the initial investment for a new generation unit and subsequent
net cash flows. Phase I assets can be valued using the traditional NPV approach. Phase II
assets refer to the value of an option to expand created by the initial investment. In this
section, we will focus on how to estimate the value of an option employing the Black-
Scholes option-pricing model (for underlying technical assumptions and the derivation of the
model, see Trigeorgis [S1], Luenberger [34], Hull [23]).

The Black-Scholes option-pricing model provides the option’s value. When the five
inputs--present value of the underlying asset (the assets to be acquired when and if the utility
exercises the option), value of construction expense required for exercising the option, risk-
free rate of return, time to the decision date, and volatility of the underlying asset per unit of
time--are specified, then the present value of the option to expand is given by equation (2.1).

We note that, to obtain equation (2.1), it is assumed that the value of the underlying asset
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follows geometric Brownian motion and the expected value of the option is discounted with
respect to risk-neutral probability (the details will be presented in Chapter 3).

V=Nd)S-Nd,)Xe™ 2.1)

where

14 =present value of the option to expand (i.e., Phase II assets)

N(d,) and N(d,) are the values of the cumulative standard normal distribution

at d, and d,, where

d,= [m(%) +(r+0.50%))/ ot

d,=d, - ot
S =present value of the underlying assets (can be observed in the market)
X =value of construction expense required for exercising the option (defined by

the features of the investment)

r =risk-free rate of return (can be observed in the market)

t = time to the decision date (defined by the features of the investment)

o =volatility of the underlying asset per unit of time (it is often the only
estimated input)

N(d,)S can be interpreted as the expected value of S if S > X on the decision date.
Xe ™™ can be interpreted as the present value of X. N(d,)Xe™ can be interpreted as the

expected value of Xe™ if § > X on the decision date. Hence, the present value of the option

to expand is given by the expected value of the present value of the underlying asset minus
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the expected value of the present value of construction expense required for exercising the
option.

From the above equation, other factors being constant, the value of the option to
expand is higher if the (1) present value of the underlying asset, S, is higher; (2) time to the
decision date, ¢, is longer; (3) value of construction expense required for exercising the
option, X, is lower; (4) variance of the underlying asset, o2, is higher; and (5) risk-free rate

of return, 7, is higher.

2.3 Black-Scholes Option-Pricing Table

Because of the computational complexity, the Black-Scholes option-pricing model is
converted to a table (called the Black-Scholes option-pricing table). In this section, we will
employ the Black-Scholes option-pricing table for the value of a European call option (we
are viewing an option to expand as a European call option because it can be exercised only at
maturity). Part of the Black-Scholes option-pricing table for the value of a European call

option is shown in Table 2.1 (i.e., the complete table can be found in [S1]).

Table 2.1 Black-Scholes option-pricing table for the value of a European call option
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The same five inputs as for the Black-Scholes option-pricing model are needed for

the value of an option to expand via the Black-Scholes option-pricing table. This table uses

NPVq and o/t to find the value of an option to expand as a percentage of the present value

of the underlying asset. The subscript q of NPV(q represents a quotient. NPVq is expressed
as S/PV(X). We note that PV(X) represents the present value of X. Sincec? denotes the

variance of the underlying asset per unit of time, the multiplication of o and ¢ provides the

cumulative (over time) variance of the underlying asset. The square root of the cumulative

variance, o+t , is called the cumulative volatility of the underlying asset.

In Table 2.1, each number represents the value of an option to expand as a percentage
of the present value of the underlying asset. Luehrman [33] says, “Option values in this table
are expressed in relative terms, as percentages of S, rather than in absolute dollars, to enable
us to use the same table for both big and small projects.”

To demonstrate how to use the Black-Scholes option pricing table, we provide a
numerical example for the value of an option to expand. The five inputs for this example are
S=$12 million, X = $16 million, » = 4%, t = 4 years, and o =30% . The present value of the

exercise price can be calculated as PV(X) =16/(1+0.04)* =13.6769. Therefore, we have

o+t =0.6 and NPVq = 12/13.6769 = 0.877. From Table 2.1, the value of the option is
18.8% (by interpolation) of the present value of the underlying asset. Thus, the value of the
option to expand is equal to $2.256 million (0.188*12).

To demonstrate the accuracy of the Black-Scholes option pricing table, we compare

the above result with the result obtained from the Black-Scholes option pricing formula. To
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calculate the value of the option using the Black-Scholes option pricing formula, we first
calculate d, and d, as
d, =[In(12/16) + (0.04 + 0.5%0.3*)*4]/0.3 * 4 =0.0872
d,=d, —03*/4=-0513
Then, we use the standard normal distribution table to obtain
N(0.0872) =0.5347, N(-0.513) =0.304
Finally, we calculate the value of the option to expand as
0.5347*12 —0.304 *16 *¢™°*™ =$2.272 million

By comparing 2.256 with 2.272, we recognize that the error of using the Black-
Scholes option pricing table is less than one percent (i.e., we consider the value via the
Black-Scholes option pricing formula as the true value). Therefore, we conclude that the
Black-Scholes option pricing table produces a reasonable result with relatively less

computational efforts.

2.4 An Expanded NPV Maximization Model

Thus far, we have shown how to obtain the value of an option via the Black-Scholes
option-pricing table. In this section, we will formulate an expanded NPV maximization
model for generation expansion planning. We assume that there are multiple projects where
each project has one option to expand (i.e., a European call option).

In this model, we maximize the sum of Phase I assets (traditional NPV) and Phase II
assets (the present value of an option) subject to budget constraints and option availability

constraints. We note that option availability indicates that it is feasible to exercise an option
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or to choose not to exercise an option. The corresponding decision variables are binary
variables for generation expansion planning projects, binary variables for options, and the

amount of construction budget not used in each period. Therefore, we have a mixed-integer

linear programming model as follows

Maximize
E.y;.z;
J
> (NPV;y; +PySyz;)
j=1
Subject to
E -(+r)E_, +ZX,, y;+ ZX,nzj =B, (22)
Jj=1
z; Zy; (2.3)
where
J = index of generation expansion planning project, j = 1,...,J

NPV =traditional NPV for project j (Phase / assets) (%)

=S, — X, where
Sy = present value of project j’s Phase [ assets (assets to be acquired
for project ) ($)
X;  =present value of the construction expense required to construct

project j’s Phase [ assets (3)

T

—§a+ St

Y; =binary variable, indicating if generation expansion planning project is
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to be constructed ( y;=1 implies construction, y,;= 0 implies no

construction)

=value of the option to expand as a percentage of the present value of the

assets to be acquired when and if the utility exercises the option for

project (i.e., P can be found in Table 2.1)
= present value of the assets to be acquired when and if the utility

exercises the option for projectJ (i.e., the present value of the underlying
asset) (%)

=present value of the option for project j (Phase 7 assets) ($)

=binary variable, indicating if the option for project is available (z; =1
implies available, z; =0 implies not available)

= construction budget unused in period ¢ ($), £, =0

=discount rate

= construction expense required to construct project j’s Phase 7 assets in

period ¢ ($)

=present value of the construction expense required to exercise the option to

expand for projectj ($)

,
Z(1+ r)* X

=1

= construction expense required to exercise the option to expand for

project; in period ¢ ($)
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B = construction budget available in period ¢ ($)

t =index of period of time, e.g., year, t=1,...,T
The objective function is to maximize the sum of Phase I assets and Phase II assets of
selected projects. It is measured in present worth because the planning horizon can be long
(ten years or more).
The budget constraints (2.2) state that in each period a certain amount of budget is
available for the construction expense required for generation expansion planning projects
and for exercising the options. The budget that is left in the current period will be carried

forward to the next period for construction. The budget carried forward earns interest at

some specified rate of return on short-term investment. We note that £,,B,, X, ,and X,

in these constraints are not discounted to the present value.
The option availability constraints (2.3) state that the option for project j is available

only if project is selected. We note that option availability indicates that it is feasible to
exercise an option or to choose not to exercise an option. If project; is not selected (y; =0),
then the option for project is not available (z; =0).
The capital budgeting process shown in this model has the following steps:
(1) Select generation expansion planning projects.
(2) After the selection of projects, construct the selected projects, given the
expenses and time durations subject to budget constraints.

(3) After the construction of selected projects, the option to expand may be

available, subject to budget constraints.
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The available, economically feasible expansion options will be exercised in the future
after uncertainties about market conditions have been resolved (conditions under which an

option will or will not be exercised can be derived with more sophisticated models; see

Trigeorgis [51]).

25 An Example

We now provide a numerical example with hypothetical data to illustrate the
applicability of our model. In this example, there are three generation expansion planning
projects. Each project has one option to expand its capacity. The planning horizon is 7
years. Project 1 is to build generation unit 1 immediately, and the construction of generation
unit 1 will create an option to expand 3 years later. Project 2 is to build generation unit 2
immediately, and the construction of generation unit 2 will create an option to expand 4 years
later. Project 3 is to build generation unit 3 immediately, and the construction of generation
unit 3 will create an option to expand 5 years later. We note that the entire planning horizon
is 7 years in this example. However, this planning horizon can be easily extended.

The rate of return is assumed to be 10%. The budgets for years 1, 2, 3,4, 5, 6, and 7
are $250, 100, 100, 400, 50, 50, and 0 million, respectively. The volatility of the assets (for
expansion of capacity) to be acquired when and if the utility exercises the option for Projects
1, 2, and 3 is assumed to be 0.4, 0.3, and 0.25 (in $ millions), respectively. The net cash
flows for Projects 1, 2, and 3 are listed in Tables 2.2, 2.3, and 2.4, respectively. We note that
the figures in these tables are in millions of dollars. We also note that the cash flows in the

rows of Phase I and Phase I in Tables 2.2, 2.3, and 2.4 are not discounted.
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Table 2.2 Net cash flows for Project 1

Year 1 2 3 4 5 6 7
Phase I

Present -125 8 8 7.8 7.3 6.9 103.2
Value

Phase I -433

Present -3253 14.7 18.4 226.6
Value

Table 2.3 Net cash flows for Project 2

Year 1 2 3 4 5 6 7
Phase I -60 -50 -30

Present -60 -45.5 -24 8 15 15 30 40
Value

Phase IT -58.6

Present -40 20 20
Value

Table 2.4 Net cash flows for Project 3

Year 1 2 3 4 5 6 7
Phase I =50 -50

Present -50 -45.5 20 20 20 20 40
Value

Phase I -193.3

Present -120 100
Value

First, we calculate Phase I assets for each project. Second, we calculate the
parameters NPVq and ot required for the Black-Scholes option-pricing table. Third, by
using NPVq and o+t as well as the Black-Scholes option-pricing table, we obtain a

percentage (of the present value of the underlying asset) for the option to expand for each

project. We note that if the Black-Scholes option-pricing table does not show values that
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correspond exactly to our calculated values for NPVq and ot , then we may employ

interpolation to obtain a percentage. Next, the Phase II assets for each project can be

obtained by multiplying this percentage by the present value of the assets to be acquired

when and if the utility exercises the option (Sy;). Finally, the sum of Phase I assets and Phase

IT assets provides the expanded NPV. The results of these calculations are listed in Table

2.5.

Table 2.5 Expanded NPV for each project

Project 1 Project 2 Project 3
S, =1412 S,, =100 S, =120
X, =125 X,, =1303 X,, =955
NPV, =162 (Phase]) NPV,, =-303 (Phase I) NPV,, =245(Phase I)
Sy =259.7 Sy =40 S,; =100
X, =3253 X,, =40 X,, =120

259.7 40 100
NPVg =-—>=0.80 NPVg=- =1 NPVg = =083
ot =043 = 0.693 ot =03J4=06 ot =0.25/5 =0.56
P, =0.195 P,, =0236 P,, =0.154
P,S, =50.64(Phase ) | P,,S,, =9.44 (Phase II) P,,S,, =15.4(Phase II)
Expanded NPV = 66.84 Expanded NPV = -20.86 Expanded NPV = 39.9

We now input the results in Table 2.5 into our model. A mixed-integer linear

programming problem is shown as follows:

Maximize

E's,y’s, z’s

16.2y, —30.3y, +24.5y, + 50.64z, +9.44z, +15.4z,

Subject to
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E +125y, +60y, + 50y, = 250
E,-1.1E, +50y, + 50y, =100
E,-1.1E, +30y, =100
E,-1.1F; +433z, =400
E,-1.1E, +58.6z, =50
E,~1.1E, +193.3z, =50

E,—1.1E; =0

YisYV2:Y3:21522,2; € {0,1}
Employing the LINDO software package [29], the optimal solution

isy, =Ly, =0,y, =1z, =1,z, =0,z, =1,E, =75,E, =132.5,E, = 245.75,E, = 237.32,
E, =311.06,E, =198.86,F, =218.75. Hence, Projects 1 and 3 are selected, and the options

for Projects 1 and 3 are available. The corresponding objective function value is $106.74
million, which is composed of the expanded NPV of $66.84 million for Project 1 and the
expanded NPV of $39.9 million for Project 3.

We note that, by the traditional NPV approach, the NPV of Projects 1, 2, and 3 is -
$49.4 million, -$30.3 million, and $4.5 million, respectively (under traditional NPV, the
expansion is not an option). Hence, in such a case, only Project 3 may be selected. By the

real options approach, the expanded NPV of Projects 1, 2, and 3 is $66.84 million, -$20.86
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million, and $39.9 million, respectively. Hence, Projects 1 and 3 are attractaive. The main
cause for this difference (selecting Project 3 only vs. selecting Projects 1 and 3) is that, under
the real options approach, uncertainty creates opportunities, and opportuniti es add values to a
project (the value of an option is nonnegative).

The Black-Scholes option-pricing model and the subsequent Black-Scholes option-
pricing table are well suited for simple real options with a single decision date. However, for
those complex real options with many decision dates, special mathematical tools such as the

binomial option valuation model are required (see Amram and Kulatilaka [3]).

2.6 Concluding Remarks

In this chapter, we formulated and analyzed a generation expansion planning model
for electric utilities based on the options theory. A critical contribution of our model was the
incorporation of the traditional NPV and the present value of an option to expand in the
objective function of the planning model. By maximizing the expanded NPV subject to
budget constraints and option availability constraints, we showed how the optimal set of
generation units to be constructed is determined.

In developing this model, we first started with a description of the Black-Scholes
option-pricing model for the value of an option to expand. Next, we presenited the Black-
Scholes option-pricing table based on the Black-Scholes model, which is wridely used in
practice. This table is used to compute the value of the option that is a comaponent in the
objective function. Once the generation expansion planning model was comstructed based on

the options theory, we provided a numerical example illustrating the key fe-atures of our

model.
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In this model, we considered budget and option availability constraints. Other
constraints that can be included in the future are: capacity constraints, reserve margins, and

reliability requirements.
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CHAPTER 3. A SINGLE-PROJECT MULTIPLE-OPTION MODEL FOR

GENERATION PLANNING

3.1 Introduction

In Chapter 2, we studied the multiple-project single-option model. In contrast, in this
chapter, we investigate the case of single-project multiple-option.

A single project here represents a potential new generation unit. The multiple options
are, for example, to construct a new generation unit, to defer construction, or to expand the
constructed bapacity level (see e.g., [S6]). We note that options may change according to the
past history of action (or inaction), time, and market conditions.

Given our definitions of a project and options, we will help utilities to determine the
optimal sequential decisions over options (to be exercised) for a project. The options
mentioned here are of strategic nature, and the market conditions here are represented by the
market value of a completed generation unit. This market value will be utilized as the
underlying asset for the strategic options.

In this chapter, the movement of the market value of the completed generation unit is
assumed to follow the geometric Brownian motion process (see €.g., [48] [49]). Since an
option is a derivative asset of an underlying asset, the optimal sequential decisions over
options for the project are determined according to the movement of the market value of the
completed generation unit.

In the multiple-project single-option model in Chapter 2, we show how to obtain the
value of an option by using the Black-Scholes option-pricing model (table). However, since

our problem involves many options with respect to time, the partial differential equations
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derived from geometric Brownian motion process are too complex to have analytic solutions.
Therefore, we employ a binomial lattice model to approximate the geometric Brownian
motion process (see e.g., [23], [34]). In other words, we assume that the uncertain market
conditions can be now represented by a binomial lattice model.

Since we will be sequentially making decisions over options, we will utilize a
backward dynamic programming formulation (see e.g., [26]). By maximizing the overall
project value during the planning horizon, we will determine the optimal sequential decisions
over the options.

This chapter is organized as follows. In Section 3.2, the real options for generation
planning are presented. Section 3.3 presents the geometric Brownian motion process that
represents the evolution of the market value of a completed generation unit. Section 3.4
shows how to approximate a geometric Brownian motion process by a binomial lattice
model. Section 3.5 provides the dynamic programming formulation. An illustrative example
is presented for managerial insights and economic implications in Section 3.6. Finally,

concluding remarks are provided in Section 3.7.

3.2 Real Options for Generation Planning

A generation planning project here represents a sequence of options. The options can
be divided into two stages. The first stage is the construction stage. During this stage, a
utility has the options to construct a generation unit and to defer the construction. The
second stage is the operating stage. During this stage, a utility has the options to operate at

the constructed capacity level, to expand the constructed capacity level, to operate at the
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expanded capacity level, and to temporarily shut down a generation unit from its constructed
capacity level or expanded capacity level.

The construction of a generation unit may require several periods (e.g., years) to
construct. If market conditions are favorable (e.g., the value of the completed generation unit
is sufficiently large) at the beginning of a period, then a utility may start or continue the
construction of a generation unit in the same period. During the period of construction, net
cash flow becomes negative because construction costs occur and no revenues are obtained
yet. On the other hand, if market conditions are unfavorable (e.g., the value of the completed
generation unit is sufficiently small) at the beginning of a period, then a utility may defer the
construction in the same period and wait for new information. During the period of
deferring, net cash flow is assumed zero.

A utility starts the operation stage of a generation unit when its construction is
completed. At the operation stage, the expected net cash flow in a period (i.e., the expected
profit) is calculated as the difference between the revenue from electric power sales and the
cost of operation in the same period. If the market condition is as expected (i.e., the value of
the generation unit is not sufficiently high or low) at the beginning of a period, then the
utility may operate the generation unit at its constructed capacity in the same period. If the
market conditions are far more favorable than expected at the beginning of a period (i.e., the
value of the generation unit is sufficiently high), then a utility may expand constructed
capacity level in the same period. During this period of the expansion, a utility operates a
generation unit at its constructed capacity level and constructs the expansion at the same

time. The total costs are equal to the sum of production costs and expansion costs. The net
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cash flow now is equal to the difference between the revenue from selling electricity and the
total costs.

If market conditions are far less favorable than expected at the beginning of a period
(i.e., the value of the generation unit is sufficiently low), then a utility may temporarily shut
down the generation unit in the same period and wait for new information. During the period
of shutdown, net cash flow is assumed zero. If new information is favorable, then the
generation unit may be switched from shutdown to operation. If the generation unit had been
operated at the constructed capacity level before it was shut down, then it would be switched
to operation at the constructed capacity level. Similarly, if the generation unit had been
operated at the expanded capacity level, we assume that it would be switched to operation at
the expanded capacity level (we can also assume that it would be switched to operating at the
original capacity level without much difficulty).

Switching from one option to another option requires a switching cost. For example,
switching from shutdown to operating entails a setup cost. Some switches are not feasible.
For example, switching from operating at a constructed capacity level to deferring

construction is not feasible. Therefore, the switching cost in this case is assumed to be

infinite.

3.3 Geometric Brownian Motion

Market conditions can be represented by the market value of a completed generation
unit. For example, if the market value of a completed generation unit decreases dramatically
in a period, then deferring may be a good option in the next period. However, at time 0 when

strategic planning is made for a generation planning project, the generation unit that the
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project represents does not exist. To estimate the market value of a completed generation
unit at time 0, we may use a currently existing generation unit that has similar features such
as capacity and construction costs (see e.g., [40], [48]).

The market value of the completed generation unit is considered as the major source
of uncertainties after time 0. Let X be the market value of the completed generation unit.
According to Teisberg [48], [49], it is reasonable to assume that X evolves stochastically
over time according to a geometric Brownian motion (GBM) shown in the following
equation.

dX = pXdt + oXdz
where dz is the differential of a standard Wiener process (with mean O and variance dr) for
the completed generation unit. x is the instantaneous expected rate of return on the
completed generation unit. o is the instantaneous standard deviation of the rate of return on

the completed generation unit.

34 Binomial Lattice Model

Instead of déveloping complicated differential equations that may not have analytic
solutions, we approximate a continuous GBM by a discrete binomial lattice model. In a
binomial lattice model, the change in the value of X has two possibilities: going up or going

down.

These two possible values are defined as the multiples of the value of X 1n the

previous period as shown in Figure 3.1 — a multiple # forup (# > 1) and a multiple d for

down (d < 1), and ud =1. The probabilities for up and down are p and 1~ p , respectively.
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Xd
X
Period 0 1 2

Figure 3.1 Binomial lattice for underlying asset

We note that the index of periods in Figure 3.1 represents the end of that period or the
beginning of the next period.

Approximating a GBM by a binomial lattice model requires two steps. The first step
is to transform the GBM for X to a process for In X . The second step is to find the suitable

values for u,d , and p, by matching the binomial lattice model to the process for In X .

A. Transformation

Let W =1n X , then, we keep terms in dW up to first order in 4t as in equation (3.1).

2
dW=———deX+ld W
ax 2 dX?

=%(,u Xdt + oXdz) (3.1)

(dx)*

_L1

X 3dr
2 x? (@ )




33

It can be shown that (dz )” is equal to dz. We note that the only nonzero term in
(dX)? is o> X *dr . Therefore, we have

d'lnX=(,u—%O'2)dt+adz 3.2)

B. Matching

We match the expected value of the change in In X in the binomial lattice model to
the expected value of dIn X in equation (3.2). Also, we match the variance of the change in
In X in the binomial lattice model to the variance of d1n X in equation (3.2).

Let X(z + At) be the value of X at time ¢ + Ar. In X (z + Ar) in the binomial lattice

model can be expressed as

InX(+At)=InX(@)+Y

where

Inu with probability p
"~ |Ind with probability 1 - p

Therefore, the matching is as follows:
E[Y]=plnu +(1-p)ind
1 .
= ——0)At
v =3 )

var(Y) = E[Y*]-(E[Y])*
=(lnu)?*4p(l—- p) =c’At

The suitable values for u,d , and p are solved as in [34]

U——0C
p=r+l 2 y/ar (3.3)
2 2 o
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u=e'" (3.4)
d=e"™ (3.5)
We note that by replacing u by r, risk-free rate of return, p becomes risk-neutral

probability (for the development of risk-neutral probability, see Appendix A).

3.4.1 Net Cash Flows of the Options

Each option has a binomial lattice to represent net cash flows that an option would
generate if it is exercised. In Figure 3.2, C; (i) represents the net cash flow that occurs at the

beginning of time 7 (and state s) when operating in option i.

C; (@)
C, ()
C,(i) C; (@)
C; ()
C; (@)

Figure 3.2 Binomial lattices for options

For some options, net cash flows are undefined in some periods. For example, if both
the construction and expansion of a generation unit require one period to complete, then the
earliest net cash flows for the option to operate at an expanded capacity level occur in period

2. Net cash flows are undefined (UD) in periods O and 1.



35

3.5 Other Numerical Method for the GBM

In Section 3.4, a GBM process for the underlying asset is approximated by a binomial
Lattice model. However, the binomial lattice model is not the only method to approximate
the GBM process. For example, Monte Carlo simulation uses random numbers to sample
many different paths that the underlying asset could follow (see e.g., [23]). For each path,
the net cash flow of an option can be calculated and discounted at the risk-free rate of return.

We note that simulation can provide numerical solution to the value of an option.
However, as we proceed to more complicated models, such as two-project/multiple-project
models in Chapters 4, 5, it would be difficult to apply numerical methods such as simulation
to do further analysis (e.g., investigation of the roles of correlation coefficients among

projects).

3.6 Dynamic Programming
Because the selection of an option in one period will affect the selections of options
in subsequent periods, the use of backward dynamic programming is necessary. We solve
the generation planning problem recursively, starting from the end and moving back, to
determine the optimal operating options for a project and the corresponding project value.
We apply the recursive relationship in Trigeorgis [S1]. The project value at the

beginning of ¢, given state s is newly observed while option during ¢ — 1 was m, is

s - 1__ s+l g

with I(m —> i) = 0 fori = m

where
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s = index of states

i = index of options

t = index of periods

E;(m) = project value at the beginning of z, given state s is newly

observed while option during z — 1 was m (assuming optimal
future decisions)

C’ () = net cash flow at the beginning of ¢, given state s is newly

observed while operating in option i

p = risk-neutral probability
r = risk-free rate of return
I(m —>1) = switching cost from option m to option i

Let T denote when the backward process starts. Atz = 7, the above recursive

relationship becomes

max .
E;(m)= ; (CrD—1I(m—1D)) (3.7)

3.7 Numerical Example

3.7.1 Input Data

We now provide a numerical example with hypothetical data to illustrate the
applicability of our model. In this example, there is a generation planning project for a gas

turbine generation unit. The project has seven options and has a 3-period planning horizon.
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The length of a period, Az, is assumed to be one year. Furthermore, we assume that each
activity (e.g., construction, expansion, etc.) will last one year for simplicity.

The constructed capacity level is assumed to be 129 MW. The expanded capacity
level is assumed to be 180 MW. Risk-free rate of return, 7, is assumed to be 0.08. The
instantaneous standard deviation of the rate of return on the completed gas turbine generation
unit, o, is assumed to be 0.6. By using equation (3.4) and equation (3.5), the multiple
factors u and d for the underlying asset (the market value of the completed gas turbine
generation unit) can be calculated as 1.8 and 0.6, respectively. Also, by using equation (3.3),
risk-neutral probability, p, can be calculated as 0.4.

i=0,1,2,3,4,5, 6 represent the activities on which options are based to defer the
construction of the generation unit, to construct the generation unit, to operate at the
constructed capacity level, to expand the constructed capacity level, to operate at the
expanded capacity level, to temporarily shut down the generation unit from operating at the
constructed capacity level, and to temporarily shut down the generation unit from operating
at the expanded capacity level, respectively. We assume that both construction and
expansion require one period to complete.

Figures 3.3 represents the binomial lattices for i =0, 1, 2, 3, 4, 5, 6, respectively. In
these lattices, net cash flows are expressed in $ millions. The first term in the parentheses
represents the revenue generated in a period. The second term represents the costs incurred
in a period. The difference of these two terms provides net cash flow in a period.

Switching costs are expressed in $ millions. 7(0 — 0,1) = 0 means that the switching
costs from option 0 to 0 and from option O to 1 are equal to 0. The rests of switching costs

are 1(0 —2,3,4,5,6)=0, I(1>0,1,4,6)=c, I(1—>23)=0, I01—->5)=0.5,
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39.2 73.5
323 (40.7,1.5) (75,1.5)
o 0 323 P 4
323 UD 335
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0
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UD 0
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Figure 3.3 Binomual lattices fori=0,1,2,3,4,5,6

I(2—01,46)=c, I(2—523)=0, I(2—>5)=05, I(3—0,1,23,5) =00, I(3—4)=0,
IG—6)=1, [(4>0,123,5) =0, I(4—>4)=0, I(4—6)=1, I(5—0,1,3,4,6) =,

I(5—>2)=05, I(5—5)=0, I(6 - 0,1,2,3,5) =0, I(6 > 4) =1, I(6 > 6)=0.



39

3.7.2 Solution

We solve this 3-period generation planning problem by using backward dynamic
programming. We first determine the optimal operating option and the corresponding project
value for each state at ¢ = 2 by using equation (3.7) (i.e., the index of periods starts at z =0).
However, at ¢ = 2, we do not have knowledge of what would be the optimal operating options
at r = 1. Therefore, for each state at r = 2, we need to consider each of the seven options as a
possible entering option. Each possible entering option results in one binomial lattice with a
set of project values and the optimal operating options.

For each binomial lattice, at =1 and z = 0, we use equation (3.6) to determine the
optimal operating options and the corresponding project values. We note that, at £ = 0, option
0 is the only possible entering option. After we solve ¢t =0, we trace forward to determine
the optimal operating options for this 3-period generation planning project (details of this
procedure are available on request). The optimal operating options are shown in Figure 3.4.

The corresponding project value at = 0 is $15.6 millions.

4
3
4
1
2
2
5

Figure 3.4 Optimal operating options for a 3-period generation planning project
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We observe that , at the beginning of period 1, we should construct the 129 MW
generation unit. If market conditions go up during period 1, then we should expand the
constructed capacity level to 180 MW at the beginning of period 2. Whether or not market
conditions go up during period 2, we should operate the generation unit at the expanded level
at the beginning of period 3. On the other hand, if market conditions go down during period
1, we should operate the generation unit at the constructed capacity level at the beginning of
period 2. If market conditions go up during period 2, we should still operate the generation
unit at the construted capacity level at the beginning of period 3. However, if market
conditions go down during period 2, we should temporarily shut down the generation unit at

the beginning of period 3.

3.8 Concluding Remarks

In this chapter, we employed a binomial options model to represent uncertain market
conditions for a generation planning project. A contribution of this chapter is that we
incorporated the strategic options at construction and operation stages that a utility may
encounter in generation planning into a dynamic programming model. By solving the
backward dynamic programming formulation, we determined the optimal sequential
decisions over options for a generation planning project and the corresponding project
values.

In this chapter, we focused on strategic options only. For future research, it would be
interesting to consider tactical options (e.g., daily decisions on production/non-production) as

well.
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CHAPTER 4. A MULTIPLE-OPTION MODEL WITH TWO CORRELATED

PROJECTS FOR GENERATION PLANNING

4.1 Introduction

In Chapter 3, we studied the single-project multiple-option model. When there is
more than one project and each project has one dominant option, but the projects are
independent, then the model in Chapter 2 can be applied. On the other hand, if the projects
are correlated, then each project can not be treated separately. This chapter is motivated by
the inadequacy of the previous model when the projects are correlated. By correlation here,
we mean the market values of the completed generation units are correlated (see e.g., [37],
[57]). As a first step toward the development of a full model, in this chapter, we will
consider the case of two correlated projects.

Teisberg [49] analyzes the construction stage of a generation planning project using
the real options approach. In her model, the construction for a generation unit can be
proceeded, be delayed, or be abandoned. In practice, however, a utility may evaluate
multiple correlated generation planning projects simultaneously. Few papers in the literature
have addressed the issue of correlated projects based on real options. The only paper of
which we are aware is for mutually exclusive R&D projects [15], which may not be an
appropriate relationship for generation planning projects (e.g., generation projects need not
be mutually exclusive).

Mathematically, the fact that the values of the completed generation units are
correlated can be modeled with correlated geometric Brownian motion (GBM) processes.

Furthermore, in Chapter 3, we assume that a GBM process can be approximated by a
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binomial lattice model. In this chapter, we construct a four-branch lattice model to
approximate the combination of two correlated GBM processes. This approximation utilizes
the correlation coefficient between the increments of two Brownian motion components (see
e.g-, [5], [22], [47]).

Once the four-branch lattice model is constructed, we develop a mathematical
expression for the value of an option. Since the expression is a function of the correlation
coefficient, we then investigate the role of the correlation coefficient in the value of an option
and decision making.

For a utility with multiple correlated projects, the number of options at a decision
point represents the enumerated combinations of the options for each project. For example,
if a utility has 2 projects and each project has 6 options, then the total number of options is
36.

Since we will be sequentially making decisions over options, we will utilize a
backward dynamic programming formulation. By maximizing the value of the investment
that includes two projects during the planning horizon, we will determine the optimal
sequential decisions over the options. We note that the backward dynamic programming
formulation is subject to constraints such as budget and demand.

This chapter is organized as follows. Section 4.2 presents the GBM processes that
represent the movements of the market values of two completed generation units. Section
4.3 shows how to approximate a GBM process by a binomial lattice model. Section 4.4
shows how to approximate the combination of two correlated GBM processes by a four-
branch lattice model. Section 4.5 provides the values of options. Section 4.6 investigates the

roles of the correlation coefficient. Section 4.7 provides the dynamic programming
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formulation. An illustrative example is presented for managerial insights and economic

implications in Section 4.8. Finally, concluding remarks are provided in Section 4.9.

4.2 Geometric Brownian Motion

Market conditions can be represented by the market value of completed generation
units (see e.g., [48], [49]). For example, if the market value of completed generation units
decreases dramatically in a period, then deferring may be a good option in the next period.
However, at the beginning of the planning horizon when the strategic planning is made for a
generation planning project, the generation umit that the project represents does not exist yet.
To estimate the market value of a completed generation unit at the beginning of the planning

horizon, we may use a currently existing generation unit that has similar features such as

capacity and construction costs (see e.g., [401, [48]).

The market value of a completed generation unit is considered as the major source of

uncertainties after the beginning of the planning horizon. Let X, be the market value of the

completed generation unit i. According to Teisberg [48], [49], it is reasonable to assume

that X, evolves stochastically over time according to a geometric Brownian motion (GBM)
shown in the following equation.

dX, =y, X dt+o,X,dz,
where dz; is the differential of a standard Wiener process (with mean O and variance dr) for
the completed generation unit i. 4; is the instantaneous expected rate of return on the
completed generation unit i. o, is the instantaneous standard deviation of the rate of return

on the completed generation unit i.
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In this chapter, we consider a utility that has two interrelated generation planning

projects. In other words, we assume that a utility has projects 1 and 2. dz, and dz,havea

correlation coefficient p.

4.3 Binomial Lattice Model
Instead of developing complicated differential equations that may not have analytic

solutions, we approximate the continuous GBMs by discrete binomial lattice models. In a
binomial lattice model, the change in the value of X, (i = 1,2) has two possibilities: going up

or going down.

These two possible values are defined as the multiples of the value of X in the
previous period as shown in Figure 4.1 — a multiple «; for up (¢; > 1) and a multiple &; for
down (d; <1), and u;d; =1. The probabilities for up and down are p, and 1~-p, ,

respectively. We note that the index of periods in Figure 4.1 represents the beginning of a

period.

u, X,
X‘- <:

Period 1 2

Figure 4.1 Binomial lattice model
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Approximating a GBM by a binomial lattice model requires two steps. The first step

is to transform the GBM for X, to a process for In X ;. The second step is to find the

suitable values for u,,d;, and p, by matching the binomial lattice model to the process for

InX,.

A. Transformation

Let W, =In X,, then, we keep terms in dW, up to first order in 4z as in equation (4.1).

aw, =2 g,
X,

1 d*W,
+_
"2 dx?

i (dX,-)z

i

"_’El_(:uiXidt-i-o-iXidzi) 4.1)

1
—5 (et Xl

It can be shown that (dz,)? is equal to dt. We note that the only nonzero term in (dX;)* is
o2 X}dt. Therefore, we have
dinX, =(u,; —%of)dt-i—a,.dz,. “4.2)
B. Matching
We match the expected value of the change in In X; in the binomial lattice model to
the expected value of 4 In X, in equation (4.2). Also, we match the variance of the change
in In X, in the binomial lattice model to the variance of 4 In X; in equation (4.2).

Let X, (¢ + At) be the value of X, attime ¢ + Az . In X, (¢ +Af) in the binomial

lattice model can be expressed as

In X,(t+Af)=In X, () + Y,
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where

Inu; with probability p,,
* 7 |Ind, with probability 1 — P,

Therefore, the matching is as follows:
E[Y,]= p, nu, +(1-p, )Ind,

1 ,
=(y; ——o;)Ar
(#; 5 )

var(¥,) = E[Y? ]-(E[Y;])*

43
=(lnu;)*4p, (I~p,) =0/ At )
The suitable values for u;,d;, and p, are solved as [32]
L
1,1 475
P, ==+ (=W 4.4)
202 o;
u, =e" M 45)
d, =e'™ (4.6)

We note that by replacing u; by 7, risk-free rate of retum, p, becomes risk-neutral
probability.
After binomial lattice models for individual generation units are constructed, we now

turn to constructing a discrete lattice model for the market value of two completed generation

units that has a correlation coefficient p .



4.4 Four-Branch Lattice Model

The combination of two binomial lattices produces a four-branch lattice, namely, the
branch with both X, and X, going up, the branch with X, going up and X, going down,
the branch with X, going down and X, going up, and the branch with both X, and X,
going down. If p =0, then the joint probability for each branch is equal to the product of
marginal probabilities.

If p #0, the adjustments a,, a,, a,, and a, are needed to be added to the products
of marginal probabilities. In Figure 4.2, the probabilities for the branches from top to bottom
are therefore p, p, +a,, p, 1-p,)+a,, 1-p,)p,, +a;,and (iI-p, )1-p,)+a,,

respectively.

u, X ,u, X,
uX,,d, X,
X1 X d\ X ,u, X,

dl X 1> dZX 2
Figure 4.2 Four-branch lattice model
A. Transformation

Similarly, two steps are required to determine the suitable values for the adjustments.

The first step is to develop a process for In.X| +In X,. It can be shown that the process is
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|
dn X, +InX,)=(u, +u, ——o; —lozf)dz
2 2 4.7)

+\/0'12 +0 +2p0,0,dz,

where dz, is the differential of a standard Wiener process which is different from dz, and
dz, (see e.g., [40]).
B. Matching

The second step is to find the suitable values for the adjustments by matching the
four-branch lattice model to the process in equation (4.7). By employing the values
obtained in equation (4.4), equation (4.5), and equation (4.6), the expected value of the
change in In X, +1In X, in the four-branch lattice model is matched to the expected value of
d(In X, +In X,) in equation (4.7). Therefore, we only need to match the variance of the
change in In X, +In X, in the four-branch lattice model to the variance of d(In X; +1n X,)
in equation (4.7).

The matching is as follows:

var(Y, +Y,) = var(Y}) + var(¥, )+ 2 cov(Y, Y,)
=0lAt+0i At +2p0,0,At

Since var(Y;) and var(Y,) are matched in equation (4.3), we only need to match the
covariance term to determine the suitable values for the adjustments. «,, a,, a,, and a, are
calculated as p/4, —p/4, —p/4,and p/4, respectively.

Market conditions determine which option should be exercised as well as the values
of the options. After we construct a four-branch lattice model for the market value of two

correlated generation units, in the next section, we present the values of the options in

generation planning.
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4.5 Values of Options
A. Call options

The options to construct a generation unit and to expand the constructed capacity
level can be regarded as call options because the utility has the right, but not the obligation to
make investment expenditures and receive the assets. For the option to construct the
generation unit, the utility will exercise this option only if the market value of the completed
generation unit exceeds the construction costs. For the option to expand the constructed
capacity level, the utility will exercise this option only if the extra revenue after the
expansion exceeds the expansion cost.

Suppose the utility has two existing generation units. Let us consider the option to
expand the constructed capacity level of generation unit 1 at the beginning of period 2. Let
K, denote the expansion cost at the beginning of period 1. Let ¢, denote the extra
percentage of the market value of the generation unit 1 that the expansion generates. The

value of the option at the beginning of period 2 is shown in Figure 4.3.

V.. =max(c,u, X, —K,(1+rAr),0)

iy

Voa, =max(c,u, X, — K, (1+rAt),0)
leuz =max(c,d, X, - K,(1+rAr),0)

V,,, =max(c,d, X, —K,(1+rAt),0)

Figure 4.3 Value of the option to expand generation unit 1
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In Figure 4.3, V’s represent the values of the option to expand the constructed capacity level
of generation unit 1 under specific market conditions and At represents the length of a
period.

Evaluating other call options requires changes in ¥’s. For example, for the option to

expand the constructed capacity levels of two generation units, ¥, is equal to
max(c,u; X, —K,(1+rAt) +c,u, X, - K, (1+7rAt),0).
Then, the value of any option at the beginning of period 1 with respect to risk-neutral

probabilities, ¥, is equal to

VO = (Vu[uz (P"l pu; +_§-) + Vuldz (pu, pdl _g)
(4.8)

o)
gy (P Py =)V, (P Py + N 1147

where p, =1-p,, b, =1-p,, -
B. Put options

The options to reduce the constructed capacity level of a generation unit can be
considered as put options because the utility has the right, but not the obligation to give up
some generation assets (e.g., sell some wind turbines for a wind generation unit) and save
some generation costs. Similarly, a utility will exercise this option only if the money saved
from reducing the capacity exceeds the amount of foregone revenue due to the capacity
reduction.

For the option to reduce the constructed capacity level of generation unit 1 at the

beginning of period 2, ¥, is equal to max(G, (1+rAz) —cu, X,,0), where G, is the
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generation costs saved from the capacity reduction at the beginning of period 1 and ¢, is the

reduced percentage of the market value of generation unit 1.

4.6 Role of Correlation Coefficient
In this section, we examine the role of correlation coefficient, p, in decision making
(i.e., the decision to exercise an option at the beginning of period 1 or 2) and in the values of
options in a two-period model.
The numerator of equation (4.8) can be expressed as
Vo Py Puy ¥ Vidy Py Pty +Vauy Pa, P,

+ Vd,d, P4 Pa, ) +§ (Vu,u2 + Vaf,d2 - Vuldz - leuz )

This implies the following conditions:
Condition 1: IfV,, +V,, =V, ., +V4u,-

uyuy wd;

then p does not have role in the value of the option.

Condition 2: IfV l

uuy

+Vaa, >Via, ¥V, »
then the increase in the value of p will increase the value of the option.

Condition3: IfV,, +V,, <V,s +Viu,-
then the increase in the value of p will decrease the value of the option.
If an option involves activities for only one generation unit, then condition 1 is

satisfied. In other words, o does not have role in the value of the option. Moreover, in this

case, p does not have role in decision making.
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If an option involves activities for two generation units, then one of conditions 1, 2,
and 3 is satisfied. In other words, p may have role in the value of the option. Now, if the
option can be exercised at the beginning of period 1 only or 2 only, then o does not have a
role in decision making. All these observation can be verified mathematically. For example,
if the option can be exercised either at the beginning of period 1 or at the beginning of period

2, then p will have a role in decision making if condition 2 or condition 3 is satisfied.

4.6.1 Numerical Example

In this example, we consider an option to reduce the constructed capacity levels of

two generation units. This option can be exercised either at the beginning of period 1 or at

the beginning of period 2. We want to determine when to exercise this option and the

corresponding values of the option.

The length of a period is 3 months. The hypothetical data are as follows:
r = 6% (annual), 4, = 30% (annual), o, = 60% (annual), 1z, = 40% (annual),
o, =40% (annual), ¢, =¢, =10%, G, =$70 million, X, = $500million, G, = $90 million,
X, =$800 million.

Then, we use equation (4.4), equation (4.5), and equation (4.6) to obtain p, =0.45,
u, =135,d,=0.74 p, =0.4875, u, =122, d, =0.82.

For the option that can be exercised at the beginning of period 2, the values at the
beginning of period 2 are calculated as follows: V,  =0,V,, =293,V,, =278,
Vaa, =59.8. Therefore, the value of this option at the beginning of period 1 with respect to

risk-neutral probabilities is
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V, =(29.3*(0.45%0.5125— p/ 4)
+27.8%(0.55*0.4875— p/ 4)
+59.8%(0.55%0.5125+ p/ 4))/1+r
=30.61+0.665p

For the option that can be exercised at the beginning of period 1, the value at the
beginning of period 1 is max(G, —¢, X, +G, —¢,X,,0) =30. We compare 30.61 + 0.665 p
with 30. If p <-0.917, then we should exercise the option at the beginning of period 1 and
the value of the option is $30 million. If p >-0.917, then we should exercise the option at

the beginning of period 2 and the value of the option is $30.61 + 0.665 p million.

4.7 Dynamic Programming

Because the selection of an option in one period will affect the selection of options in
subsequent periods, the use of backward dynamic programming is necessary. We solve the
generation planning problem recursively, starting from the end and moving back to
determine the optimal sequential decisions for a utility and the corresponding value of the
investment.

Corresponding to the four-branch lattice for the market values of the completed
generation units, each option has a four-branch lattice representing net cash flows that the
option would generate if it is exercised. Each net cash flow represents the payoff under a
specific market condition in a specific period. For some options, the net cash flows are set at
negative infinity in some periods. For example, if both the construction and expansion of a

generation planning project require one period to complete, then for that project the earliest
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feasible net cash flows for the option to operate at the expanded capacity level occur in
period 3. Therefore, the net cash flows are set at negative infinity in periods 1 and 2.

The value of the investment at the beginning of z, given state s is newly observed
while option during ¢-1 was m, can be obtained from the expected value of the investment at

the beginning of 7+1 as follows:

72 om="" ;@ + 2O pm s 1y
I 1+r
subject to
I(m —>i)=0 fori=m
(e F;
where
s = index of states (the changes in market value of the complete projects, i.e.,
(up, up), (up, down), (down, up), (down, down))
i = index of options
t = index of periods, #=1,..., T-1, where T is the last period under planning

V;? (m) = value of the investment at the beginning of ¢z, given state s is newly
observed while operating in option m (assume optimal future decisions)

C; () =net cash flow at the beginning of ¢, given state s is newly observed while
operating in option i

E[V,,,(i)]= expected value of ¥, (¢) with respect to risk-neutral probabilities

V.., (®) = value of the investment at the beginning of 7+1 while operating in option-i (a

random variable)
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r = risk-free rate of return in a period
I(m — i) = switching cost from option m to option i
F; = set of feasible options at the beginning of ¢, given state s is newly observed

For the case of two correlated generation planning projects (i.e., a four-branch lattice

model), the probability distribution for ¥, , (i) is as follows:

Vs (i) with probability p, p, + %

- V% (i) with probability p, p,, “%
o V4 (i) with probability p, p,. — %
V4% (i) with probability p, p, + %

We note that the above probabilities are risk-neutral probabilities. With respect to the

risk-neutral probabilities, we discount E[V,,,(i)] at the nisk-free rate of return.

Switching from an option to another option requires a switching cost. Some switches
are not possible. For example, switching from operating at a constructed capacity level to
deferring construction for the same project is not possible. In this case, the switching cost is
assumed to be infinite.

We note that each option, given a state and a period, should be checked for feasibility.
That is, there may be various constraints (such as financial or demand constraints) that make
it impossible to exercise an option. For example, a utility may not have enough budget to
expand two generation units’ capacity at the same time. Therefore, such an option is not
feasible to switch to. Similarly, a utility may need a certain amount of capacity to serve
customers at a specific time. Therefore, the option to defer the construction of two projects

may not be feasible at that time point.
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With the switching costs and constraints, the number of the feasible options that
should be evaluated over the planning horizon will be greatly reduced.
Let T denote the last period under planning. The value of the investment at the

beginning of 7, given state s is newly observed while option during 7-1 was m, is as follows:
. max . . .
Vy(m)= ; (Cr()—1I(m—>1)

subject to

Ilm—>i)=0 fori=m

ieF;

4.8 Numerical Example
4.8.1 Input Data

We now provide a numerical example with hypothetical data to illustrate the main
features of our model. In this example, there are two generation planning projects (1 and 2).
Project 1 represents a potential wind power generation unit (combination of wind turbines).
Project 2 represents a potential gas turbine generation unit. Each project has the options to
defer the construction of the generation unit, to construct the generation unit, to operate at the
constructed capacity level, to expand the constructed capacity level, to operate at the
expanded capacity level, to sell the constructed generation unit at its salvage value, and to
sell the expanded generation unit at its salvage value.

The planning horizon is 3 periods and each period is one year. The 3-period four-
branch lattice for the market values of the two completed generation units is shown in Figure

4.4. In Figure 4.4, the index of periods represents the beginning of a period. We assume that
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both construction and expansion of both generation units require one period to complete.
Risk-free rate of return, 7, is assumed to be 0.06. The data for the generation units that the
two generation planning projects represent is listed in Table 4.1. The correlation coefficient
between the market values of the two completed generation units is assumed to be -0.5.

From Table 4.1, we can calculate the risk-neutral probabilities of the binomial lattice

models for individual projects as p, =06, p, =04, p, =0475, p, =0.525. Then,

risk-neutral probabilities of the four-branch lattice model for two correlated projects can be

calculated as 0.16, 0.44, 0.315, and 0.085 for the branch from top to bottom for each node in

Figure 4.4, respectively.
ulzXl’uszZ
ul X,,u,d, X,
X ,diX,
u X, u X, “rte gt
ud X, ,ulX,
¥ X uX,,d, X, ud X\, ud, X,
124
dX,,dX,
d\X,,u, X, l;v)l{ l 2;Y -
. ’u') 2
dX,,d, X, PR
dszuuzdez
dlzXl’dZZXl
Period 1 2 3

Figure 4.4 3-period four-branch lattice
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Table 4.1 Project data

Project 1 Project 2
Annual rate of return on the 0.2 0.3
completed unit
Annual standard deviation of the | 0.2 0.4
completed unit
Constructed capacity (MW) 140 150
Capacity after expansion (MW) | 180 200

As stated previously, each project has 7 options at each decision time point (i.e.,
node). Since there are two projects, at a node, a combination pair of options can be formed
with one option for each project. Therefore, the total number of combination options at each
node is 49. For each pair of combination options, we have a 3-period 4-branch lattice
depicted in Figure 4.4. We note that at each node, we are newly informed of the specific

market values of the generation units. Given the specific market values, we can obtain the

net cash flow (C; (i) ). Since there are 14 nodes (1+4+9) for 49 combination pairs of options,

we calculate 14*49=686 C; (i) ’s. The complete numerical data are available upon request.

At r = 3, we assume that there are capacity constraints requiring 350 MW of capacity
for the first 8 nodes and 345 MW of capacity for the last node (d}X,,d? X,) in Figure 4 4.
At t =2, we assume that there are capacity constraints requiring 200 MW of capacity for the
first 3 nodes and 180 MW of capacity for the last node (d,X,,d,X,). Att=1, we assume
that there are no constraints.

In this example, some of switches are logically impossible. For example, for the
same project, we can not switch from deferring to operating, from deferring to expanding,
and from deferring to selling. For impossible switches, the switch costs are assumed to be

infinite. In this example, all the switching costs for possible switches are assumed to be zero.
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4.8.2 Solution

At all nodes at ¢ = 3, the only option that satisfies the capacity constraints is the
option to operate both units at the expanded capacity level. At all nodes at ¢t =2, there are
four options satisfying the capacity constraints. They are the option to operate both units at
the constructed capacity level, the option to operate unit 1 at the constructed capacity and
expand unit 2, the option to expand unit 1 and operate umnit 2 at the constructed capacity level,
and expand both units. Since at z =2 all the feasible options are in operating conditions, the
utility must construct both units at r = 1.

After we examine constraints and obtain feasible options for all nodes, we examine
the switching costs. There are four feasible options at z =2 and one feasible option at ¢ = 3.
However, at ¢ = 2 the option to expand both units is the only option that does not incur
infinite switching cost. Therefore, the option to expand both units is the optimal option at ¢ =
2.

In summary, the optimal options are to construct both units at 1 = 1, to expand both
units at z = 2, and to operate both units at the expanded capacity level at z=3. The
corresponding optimal investment value at the beginning of decision time point 1 (with the
assumption that generation units 1 and 2 are deferred from decision time point 0) is
calculated as $ 36.5 millions.

To reduce the number of options that should be considered in dynamic programming,
we propose a two-step procedure via a numerical example. First, we eliminate the options
that violate the constraints. Secondly, starting from the last period, we ignore the options that
incur infinite switching costs. Via this procedure, the size of the dynamic programming can

be greatly reduced.
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4.9 Concluding Remarks

In this chapter, we developed a generation planning model for two correlated projects
based on the real options theory. Specifically, first, we constructed a four-branch lattice
model that approximates the combination of two correlated GBM processes for two
correlated projects. Then, we investigated the roles of the correlation coefficient in both the
value of an option and decision making. Finally, by maximizing the value of investment that
includes two correlated projects, we showed how the optimal sequential decisions over the
options can be determined.

The contributions of this chapter are as follows. First, we constructed a four-branch
lattice model that explicitly incorporates the correlation coefficient of two projects. Second,
we showed that the value of the correlation coefficient may affect both decision making and
the value of an option.

As an interesting future research, we plan to study intuitive reasons for the role (or the

lack of the role) of p in the value of an option and decision making.
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CHAPTER 5. A MULTIPLE-OPTION MODEL WITH MULTIPLE CORRELATED

PROJECTS FOR GENERATION PLANNING

5.1 Introduction

In Chapter 4, for two correlated projects, we designed and analyzed a four-branch
lattice model based on the real options approach. In this chapter, we extend the model in
Chapter 4 by considering a general case of n (n = 2) correlated projects.

In order to develop a model for multiple correlated projects, we first extend the four-
branch lattice model for two correlated projects to an eight-branch lattice model for three
correlated projects. Namely, project 1, 2, and 3. These three correlated projects will have
the following sub-relationship. i.e., the correlation between projects 1 and 2, the correlation
between projects 2 and 3, and the correlation between projects 1 and 3. Each of these
correlations can be represented by a four-branch lattice. With three projects, we will need an
eight-branch lattice (representing the up and down of the market value of each project). As
for the risk-neutral probabilities of the eight-branch lattice model, we obtain them by solving
a system of equations generated by the risk-neutral probabilities of three four-branch lattice
models.

Once our lattice model for multiple correlated projects is constructed, we proceed to
compare our model with other lattice models. Even though there are very few papers for
correlated capital investment projects (see e.g., [15]), there do exist studies on how correlated

geometric Brownian motion processes are approximated by discrete lattices (see e.g., [12],

[18], [25)).
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Next, we investigate the roles of correlation coefficients by using a two-period lattice
model. For this investigation, we first examine the case of three correlated projects. Next,
we examine the general case of n (n = 2) correlated projects. Based on explicit sets of
conditions, the roles of correlation coefficients are presented.

Finally, we provide a dynamic programming model for sequential decision making
purposes. Via an example with three correlated projects, we illustrate how the optimal
decisions over options for multiple correlated projects can be determined.

The organization of this chapter is as follows. In Section 5.2, we provide an eight-
branch lattice model for three correlated projects. In Section 5.3, we extend the eight-branch
lattice to a lattice model for multiple correlated projects. Section 5.4 compares our
apprO).cimation model with other approximation models. Section 5.5 investigates the roles of
correlation coefficients. Section 5.6 provides a dynamic programming model for sequential
decision making. This will be f_ollowed by an illustrative example with three correlated
projects in Section 5.7. Finally, concluding remarks and comments on future research are

provided in Section 5.8.

5.2 Lattice Model for Three Correlated Projects

A utility may consider strategic options for multiple correlated projects where each
project represents a power plant. The market value of each power plant is assumed to evolve
stochastically according to a geometric Brownian motion (GBM) process and is correlated to
the market values of other power plants. Thus, there are multiple correlated GBM processes
for the market values of power plants, which are considered as the underlying assets for the

strategic options for multiple correlated projects.
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To estimate the values of such options, we construct lattice models by matching the
key parameters such as means, variances, and covariances to the correlated GBM processes.
Our first attempt is to develop a lattice model for three correlated projects. Then, we will
generalize this lattice for n correlated projects (n > 2).

Let X, (i =12,3) be the market value of power plant i and it evolves according to:
dX, = pu, X,dt + 0, X dz;
where dz, and dz, has correlation coefficient p,,, dz, and dz, has correlation coefficient

Pis» dz, and dz, has correlation coefficient p,; .

One GBM process is approximated by a binomial lattice and the combination of two
GBM processes is approximated by a four-branch lattice. Similarly, the combination of three
GBM processes can be approximated by an eight-branch lattice as shown in Figure 5.1. For
example, the first branch in Figure 5.1 represents that all of X, X,, X; move up. Let p,
denote the risk-neutral probability for the up-move in a binomial lattice for underlying asset
i. If three GBM processes are not correlated, then the joint probability for each branch in

Figure 5.1 is equal to the product of three marginal probabilities. For example, the joint

3
probability for the first branch in Figure 5.1 is therefore equal to H p,, - Otherwise, an

i=l
adjustment, a,, k =1,...,8, is needed to be added to the product of three marginal

probabilities in branch k4. For example, the joint probability for the first branch in Figure 5.1

3
is therefore equal to H p,, +a,. Now, we need to determine the values of a,s.

i=1
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U X, u, Xy, u, X,

w X, ,u,X,,d, X,

w X, d,X,,u; X;

uX,,d, X,,d, X,

X, Xy, X, > d X ,u,X,,uX,;
d.X,,u,X,,d, X,

d\X,,d,X,,u, X,

lel ’ d?.XZ ? d} X3
Figure 5.1 Eight-branch lattice for three underlying assets

A binomial lattice for one underlying asset is constructed by matching the mean and
the variance of the lattice to the mean and the variance of the GBM process. Then, by using
two matched binomial lattices for two individual underlying assets, a four-branch lattice for
two correlated underlying assets is constructed by matching the covariance of the four-branch

lattice to the covariance of the combination of the two GBM processes. For example,

observe that the bottom branch of Figure 5.1 (4, X,,d,X,,d,X;) is from the combination of

the bottom branches of the three four-branch lattices in Figure 5.2.
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X, u, X, X, u Xy
X, X,

u X,,d, X, X, X, u X,,d; X,
d\ X, u, X, d X, uX,
d\X,,d,X, dX,,d;X;

Uy X5, us Xy

X3, X u, X,,d; X,

d, X, u X,

d,X,,d; X,

Figure 5.2 Four-branch lattices for three pairs of correlated underlying assets

The probabilities for the branches from top to bottom for the pair of underlying assets

Py Py Py
4 PuPa, ~ g PPy~

Py .
R +——, respectively.
4 2 P4 Py, 2 P Y

ijare p,p, +

The adjustments as well as the probabilities for the branches in Figure 5.1 can be
determined by using the four-branch lattices in Figure 5.2. Since key parameters such as
means, variances, and covariances have already been matched, the eight-branch lattice based
on four-branch lattices will automatically match the GBM processes for each individual
underlying asset, as well as the combination of two correlated GBM processes for each pair
of underlying assets.

Let us consider the pair of underlying assets 1 and 2. The sum of the probabilities

associated with the first two branches (i.e., #, X, ,u, X, ,u, X; and u, X,,u, X,,d;X;)1n
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Figure 5.1 should be equal to the probability associated with the first branch (%, X,,u,X,) of

the first lattice in Figure 5.2. Mathematically,

Pz

p'l:p"zp": +al+pulpuzpd3+a2=pulpu1+ 4

This implies q, +a, = %2_ . By the same logic, the following system of equations can be

derived to determine the values of a,s.

a, +a, =%‘l
yva =L
as +a, —-%
a, +ag ’0:
a, +a =—’942
a, +a =-—p4£
ayran =B
a,+ag = p423
a, +a, =%
oy ra, L2
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Pis

a; +a, =—-—=
s 4

ag +ag =£‘;—3

This system of equations has rank 7 and there are 8 unknowns. Thus theoretically,
the number of solutions is infinite. However, we can consider the following symmetric
relations: a, = ay, a, =a,, a; =ay, a, =a,. 1.e., the adjustments where market value
directions of each project are opposite are the same. Under this symmetric relations, the 12

equations with 8 unknowns are reduced to the following 6 equations and 4 unknowns.

a +a, = Pz
__Pr
a, +a, =—-%
al-%—a“=pT23
a, +a, =-pTZ3
a, +a, =P
4
a, +a, =—%

Here the rank can be verified to be 4 and the following solution is unique:

=p12+p23+p13 P2 — P — Pis a =‘,012-PB+P13 a ="p12+p23_p13

7a = b b
% 8 2 8 3 8 4 8
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a, = P12 T Py~ Pis , a, _ T P12 Pt P ,a, = P12~ P~ Pis ’
8 8 8
_ P T Pt Py
a, = 2 i

We note that the only lattices that need to be appro-ximated to the GBM processes are
binomial lattices for individual underlying assets and four-branch lattices for two correlated
underlying assets. After these lattices are constructed, an eight-branch lattice for three
correlated underlying assets can be constructed by solving a system of equations based on
four-branch lattices. Similarly, a sixteen-branch lattice for four correlated underlying assets

can be constructed by solving a system of equations based on eight-branch lattices.

5.3 Lattice Model for N Correlated Projects
By the symmetry of the expressions obtained for four-branch and eight-branch

lattices, the probability associated with branch & of the latttice for n correlated underlying

assets 1s
n 1 n n n
P = HPJ,-(k) +-2_n_zzaff(k)p!7 k=1,...,2
i=] =l ;":,2
where
5.(k) = u; if assetihas an up - movein branch &
7771 d, if assetihasa down - move in branch k

1 if both asset i and asset j move in same direction in branch &

-1 if both asset  and asset j move in opposite direction in branch k&
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54 Comparisons with Other Approximation Models

Our lattice model for n correlated underlying assets is constructed based on binomial
lattice models for individual underlying assets. A binomial lattice model is constructed by
choosing the suitable values for the key parameters in the lattice (Cox, Ross, and Rubinstein
[17]). Specifically, suitable values for three unknowns are determined by solving a system of
three equations. The three unknowns are the probability associated with an up-move, a
multiple for an up-move, and a multiple for a down-move. The three equations are the
equation to match the mean of the lattice to the mean of the GBM process, the equation to
match the variance of the lattice to the variance of the GBM process, and the equation that
imposes the assumption that the product of the two multiples is equal to one.

However, Cox, Ross, and Rubinstein approach (CRR) is not the only approach of
constructing a binomial lattice. Instead of imposing the assumption that the product of the

two multiples is equal to one, Hull [23] fixes the probability at 0.5. By solving two equations

o

. . r Z)A:WJE
for two unknowns, Hull determines the multiple for an up-move as u =e 2 and the

(riz)m—o-ﬁf: . )
2 . Hull claims that the advantage of his model

multiple for adown-move as d =e
over the CRR approach is that the probabilities are always 0.5. In contrast, the CRR
approach may give negative probabilities if the length of a period ( Az) is sufficiently large.
Furthermore, Hull claims the disadvantage of his model is that it is not easy to determine the
hedging strategies because the value of the underlying asset does not recombine after two
periods.

The CRR approach has been extended to four-branch lattices for two underlying

assets by Boyle et al. [13] and Wang and Min [57]. Boyle et al. equate the characteristic



70

function of the four-branch lattice with the characteristic function of the combination of two
GBM processes.
The difference between Boyle’s four-branch model and Wang and Min’s four-branch

model is in risk-neutral probabilities. In Boyle’s model, the probabilities (e.g., the
probability of (up, up)) keep terms up to vAs . In Wang and Min’s model, the probabilities

keep terms up to Az (i.e., this can be observed by expanding the mathematical expressions).

55 Roles of Correlation Coefficients
Let us consider an option for a utility with three correlated projects in a two-period
model. In this model, the evolution of the three underlying assets is represented by an eight-

branch lattice. Suppose the option can be exercised at the beginning of period 2. Let V

denote the value of the option at the beginning of period 2 under the market condition that all
three underlying assets just moved up. For example, if the option is to expand the existing

capacity levels of power plants 1, 2, and 3, then

U,

Vs, = max(y (cas, X, — K,(1+7)),0)

i=l

where
c; = extra percentage of the market value of power plant i that the expansion
generates
u; = multiple for an up-move for power plant i

K.= expansion cost for power plant i at the beginning of period 1

~
Il

risk-free rate of return in a period
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Then, the value of the option that can be exercised at the beginning of period 2 at the

beginning of period 1 with respect to risk-neutral probabilities, ¥ , is equal to:

p12+p813+p23)+ P2 — Pis _pn)

8

— Pz~ P +,023)
8

— P2t Pis "pzs)
8

Pia T Pi3+ Py
2 )

1
VO = —+' - (Vul"z": (pul puz pu3 + Vu‘uzdl (p"l p“2 pd; +

— P2 T Pz —p23)+V

+V oty (P Pa, Po, + wdydy, (Pu,PayPa, +

— Pz ~ Pz +p23)+

+le"1“: (pdnp"zp": + de"zd: (pdlp"zpds *

Pz "'p813 _pzs)+

+dedz“3 (pdxpdzp": + ledzds (pdxpdzpd‘.\ +

To determine the roles of the correlation coefficients in the value of the option, we
calculate the partial derivatives of ¥, with respect to p,,, p,;,and p,; as follows:

ov. 1
0 —_— — — — —
aplz - 8(1 + r) ( Uy + Vu,u;d; qud:u; Vuldz’da leuzul leuzdl + ledzus + ledzd3)

ov, 1

P, = 8(1+ r)( wuguy Vuluzd, + Vular,u3 - I/uld,.d, -7, dyuguy T 4 dyuydy -V, ddauy, T ledzd3)

av, 1

= 14 -V -V +V, +V
apzs 8 (l + r) ( nuquy uyu,dy ud,uy uyd,dy

ducuy de"zdz - ledzuz + ledzd: )

These imply the following conditions:

+V

dyuyd; 2

Condition 1: IfV,, ., +V, .0 +Vyisu tViaa =

Uzl uuads uydyuy + V“sdzds + le":";

then p,, has no role in the value of the option.

Condition2: IfV +V

kgl wyrdy

+led + dedzdz >V

243 uyd iy

+ V,“dzd] +V + leuz dy >

dyuzuy
then the increase in the value of p,, will increase the value of the option.

Condition 3: IfV +V

upquy uyuyds

+ le du, T Vd‘ dydy < V

wydpus

+ Vu,dzd;, +V

dyuuy + Vd,u;d; ?

then the increase in the value of p,, will decrease the value of the option.



Condition 4:

Condition 5:

Condition 6:

Condition 7:

Condition 8:

Condition 9:
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If7,

Uyitalis + Vu‘dzul + leuzdl + V:ﬁdﬂi, = Vuluzds + Vu,d;d; + leulu, + ledzu, >
then p,, has no role in the value of the option.

TV +V

wpeguy TV udyuy T Viuna, ¥ Vd,dzd, >Vt Viads ¥ Vi, ¥ Vadn, »
then the increase in the value of p,, will increase the value of the option.

Ty +V

ugtyuty uydqusy + leuzdl + V:ila'zdJ < T/u,uza'z + Vu‘dzd; + leuzul + ledzul 4

then the increase in the value of p,, will decrease the value of the option.

UV i, ¥V, V.

Uyt dyuquy + ledzds = T/uluzd3 + Vuldzu;, +Vd‘u1a'3 +ledzu] b

then p,, has no role in the value of the option.
If quu;u; + I/:qdzzi3 + Va}u,u; + ledza'3 > V:llll1d3 + Vuldzu; + Vd,lqd: + Vd',dlu; ’
then the increase in the value of p,; will increase the value of the option.

+ ledzdl < V"x"zdz + V“ldz"s + le"zd: + ledz": ?

UV, ¥V, +V.

Uy dyuquy

then the increase in the value of p,; will decrease the value of the option.

If an option involves activities for only one power plant, then conditions 1, 4, and 7

are satisfied. In other words, p,,, p,5,and p,, have no roles in the value of the option. If

an option involves activities for two power plants, for example, power plants 1 and 2, then

p,; and p,, have no roles in the value of the option (see conditions 4 and 7). On the other

hand, if an option involves activities for all three power plants, then p,,, p,;, and p,; may

have roles in the value of the option (due to conditions 2, 3, 5, 6, 8, 9).

Now, let us consider an option for a utility with n correlated projects over a period

where the evolution of the n underlying assets is represented by a 2" -branch lattice. Then,
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. . .1
the number of correlation coefficients is En(n -1). Let V,, k=1,23,...,2", denote the value

of the option at the beginning of period 2 under the market condition & (branch k). For

underlying assets fand g, p, has the following conditions:

Condition 1: If Z v, = Z V, , then p . has no role in the value
k: f,g move in same direction  k: f',g move in opposite direction
of the option.
Condition 2: If Z v, > Z V. , then the increase in the value of

k: f.g move in same direction  k: f7,g move in opposite direction

P Wwill increase the value of the option.

Condition 3: If Z Ve < Z v, , then the increase in the value of

k: f,g move in same direction  k: f',g move in opposite direction
P, will decrease the value of the option.
If an option involves activities for only one power plant, then no correlation
coefficient has any role in the value of the option. If an option involves activities for only

two power plants (i.e., fand g), then p, may have a role in the value of the option.

Similarly, if an option involves activities for n° power plants, then the corresponding

correlation coefficients of the n power plants may have a role in the value of the options.

5.6 Sequential Strategic Options
Thus far, we investigated the role of correlation coefficients. In this section, we will
utilize a dynamic programming model to formulate sequential decision making processes.
Specifically, we assume that strategic options can only be exercised at the beginning

of a period, and there are n correlated projects. It can be shown that the number of market
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conditions (states) in a multiple-period lattice at the beginning of period ¢ is ¢" where n is the
number of projects. For example, if there are three projects, then the number of states at the
beginning of period 1 is 1, the number of states at the beginning of period 2 is 8, and the
number of states at the beginning of period 3 is 27. Figure 5.3 shows the evolution of three
underlying assets in a three-period eight-branch lattice. The values of three underlying assets
at the beginning of period 3 denoted by numbers in Figure 5.3 are listed in Table 5.1.

For a utility with multiple projects where each project has multiple options, the
number of options at a decision point represents the enumerated combinations of the options
for each project. For example, if a utility has 3 projects and each project has 4 options, then
the total number of options are 64.

Since options are the derivative assets of underlying assets, each option is associated
with a lattice that has the same number of states and the same probabilities for states as the
lattice for underlying assets. Each option’s lattice represents net cash flows that the option
would generate if it is exercised. Each net cash flow represents the payoff under a specific
market condition in a specific period.

Because the selection of an option in a period will affect the selection of options in
subsequent periods, we apply backward dynamic programming to determine the optimal
strategic options over the planning horizon. We solve this problem recursively, starting from
the end and moving back to determine the optimal strategic options for a utility and the
corresponding value of the investment. We note that the value of investment represents the
sum of accumulated values of options for each project.

The value of the investment at the beginning of 7, given state s is newly observed

while option during z-1 was m, can be obtained from the sum of net cash flow (C; (?) ), the
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. .. V.,.(@
discounted expected value of the investment at the beginning of r+1 ( EIL(I)]), and the
+r
negative value of the switching cost (/(m — 7)) as follows:
max
72 om =" (Cr @+ 2 rn iy (5.1)
4
s.t.
Ilm —>i)=0 fori=m
ieF;
where
s = index of states, s=1,...,¢t"
t = index of periods, ¢=1,...,7-1, where T is the last period under planning
i = index of options

¥V (m) = value of the investment at the beginning of ¢, given state s is newly
observed while option during z-1 was m

C; (i) =net cash flow at the beginning of ¢, given state s is newly observed while
operating in option {

E[V,,,(i)]= expected value of ¥, (i) with respect to risk-neutral probabilities

r = risk-free rate of return in a period

I(m — i) = switching cost from option m to option i

F’ = set of feasible options at the beginning of ¢, given state s is newly

observed
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Figure 5.3 Evolution of three underlying assets
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Table 5.1 Values of underlying assets in period 3

1 wl X, i X, ulX, 15 ud X,,u,d,X,,d X,
2 qul,uin,u3d3X3 16 u‘dl)(l,d._,zXz,u:‘ZX3

3 ulX,,ulX,,d2X, 17 ud X,,dX,,u,d, X,
4 ul X, u,d, X, ul X, 18 udX,,d;X,,dZ X,
) ulX,,d?X,,ulX, 19 di X, ulX,ulX,

6 ulX,,u,d, X, ud, X, |20 dlX,,ulX,,ud, X,
7 w! X, uiX,,u,d, X, 21 dl X, ,ulX,,d?X,

8 ulX,,d*Xx,,d?X, 22 dlX,,u,d, X,,ulX,
9 u'X,,u,d,X,,d*X, 23 dl X, u,d, X,,u,d, X,
10 u[a![X,,uzz).’z,u;zl’3 24 a!lzX,,51722X2,z¢32)('3

11 wd X, ulX, udX, |25 di X, u,d, X,,d2 X,
12 ud X, ulX,,d? X, 26 diX,,d:X,,u,d, X,
13 ud X, ,u,d, X, utXx, |27 diX,,d?X,,d*X,

14 wd X, u,d, X, ud, X,

If there are three projects (three underlying assets), the probability distribution for

V.. () is as follows:

. + +
[ V% (i) with probability p, p,, p,, +22 P; Pas
;4% (i) with probability p, p,, p,, +22— pés ~ Pas
—— + —
V4% (i) with probability p,, Py, P, +— ;913 P
~ P TPt P

V%% (i) with probability Py Pa,Pa, +

t+1

VH-I (l) = 8

V4 (i) with probability p, p,. p,, +—22— ;’13 * Pa
Vi*® (i) with probability Py Pu,Pa, TPt *80 13 7 P
V42 (i) with probability p, p,. p,, +22— p; =P

P2+ Piz + Pas
8

| (¥) with probability Py Pq4,Pa, +

t+1
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We note that the above probabilities are risk-neutral probabilities. Based on these

probabilities, we can calculate the expected value E[V,,,(?)]. This will be discounted at the

risk-free rate of return as in equation (5.1).

Switching from an option to another option requires a switching cost. If a switch is
between the same option, the switching cost is assumed to be zero. Some switches are not
possible. For example, switching from operating at a constructed capacity level to deferring
the construction for the same project is not possible. Thus, the switching cost is assumed to
be infinite.

We note that each option, given a state and a period, should be checked for feasibility.
That is, there may be various constraints (such as financial or demand constraints) that make
it impossible to exercise an option. For example, a utility may not have enough budget to
construct three gas turbine power plants in a period. With the considerations of switching
costs and constraints, the number of options that should be evaluated through backward
dynamic programming will be greatly reduced.

The value of the investment at the beginning of the last period can be obtained as

follows:
max
Vi (m) = ; (Cr(@)—I(m —> 1))

s.t.

Ilm—>i)=0 fori=m

. 5
ieF;
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5.7 A Numerical Example for Three Correlated Projects

We now provide a numerical example with hypothetical data to illustrate our
multiple-period lattice model. In this example, there are three correlated projects. Project 1
represents a potential gas turbine power plant, called power plant 1. Project 2 represents
another potential gas turbine power plant, called power plant 2. Project 3 represents a
potential wind power plant, called power plant 3. An eight-branch lattice is employed to
represent the evolution of the three correlated underlying assets. Each project has the options
to construct the power plant, to defer the construction of the power plant, to operate at the
constructed capacity level, and to sell the constructed power plant at its salvage value.
Therefore, the total number of options in a period is 64.

The planning horizon is 3 periods and the length of a period 1s 6 months. For
simplicity, we assume that the construction of a power plant can be completed in a period.
This assumption can be easily relaxed by dividing construction of a power plant into multiple
stages and each stage can be completed in a period. The completion of a stage will provide
the option to complete the following stage. Risk-free rate of return in a period, r, is assumed
to be 0.05. The correlation coefficient between underlying assets 1 and 2, p,,, is assumed to
be 0.5. The correlation coefficient between underlying assets 1 and 3, p,,, is assumed to be

—0.6. The correlation coefficient between underlying assets 2 and 3, p,,, is assumed to be

—0.7. The data for each potential power plant is listed in Table 5.2.
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Gas turbine 1 Gas turbine 2 Wind power
(power plant 1) (power plant 2) (power plant 3)
Constructed 100 150 50
capacity (MW)
Annual rate of 0.3 0.3 0.2
return,
Annual standard 0.4 0.4 0.2
deviation, o;
Construction cost 50 80 20
($ million)
Market value of the | 60 90 25
underlying asset at
the beginning of
period 1

There exist two sets of constraints. The details of these constraints are listed in Table

5.3. We note that the total construction costs spent in a state cannot be greater than the

budget restriction in that period. Also, we assume that the upper management has strategic

requirements on capacity that is external to the real options model (i.e., the capacity

requirements are parameters). The total capacity operated in a state cannot be less than the

capacity restriction under that state.

With the input data, we first calculate the risk-neutral probabilities of the binomial

lattices for each underlying assetas p, =04735, p, =0.4735, p, =0.553. The multiple

Table 5.3 Budget and capacity constraints

=1 =2 =3
Budget 150 for all states 60 for all states None for all states
(USS million)
Capacity None for all states 250 for first 6 states | 280 for first 26 states

requirement (MW)

230 for last 2 states

220 for last state
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for an up-move for underlying asset 1, 2, 3 is calculated as 1.327, 1.325, and 1.152,
respectively. The multiple for a down-move for underlying asset 1, 2, 3 is calculated as
0.754, 0.754, and 0.868, respectively. Then, with the values of the correlation coefficients,
we can calculate the risk-neutral probabilities for the eight branches emanating from each

state in the eight-branch lattice as shown in Table 5.4.

Table 5.4 Probability for each branch

Branch 1 2 3 4 5 6 7 8

Probability | 0.024 | 0.325 | 0.088 0.036 0.063 0.061 0.378 0.024

With the probabilities for the branches, the multiples for the underlying assets, and
the initial values for the underlying assets, the lattice representing the evolution of the
underlying assets is finally constructed.

Each option is associated with a three-period eight-branch lattice as the underlying
assets. The net cash flows representing the payoffs of an option under different states (i.e.,
nodes in a lattice) can be estimated by using the values of the underlying assets. In this
example, the payoff of the option to sell a power plant is assumed to be the value of its
underlying asset. The payoff of the option to construct a power plant is assumed to be the
negative value of its construction cost, which is assumed to be constant over time. The
payoff of the option to operate a power plant in a period is assumed to be one-fourth of the
value of its underlying asset in that period. Finally, the payoff of the option to defer the
construction of a power plant is assumed to be zero.

We note that, in our three-period example, period 3 is not the last period of the life of

the power plants. Instead, it represents the last period of a utility’s planning. Thus, the
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payoff in period 3 represents the cumulated payoff for all later periods. For example, the
payoff for the option to operate at its constructed capacity level is assumed to be equal to 2
times the value of the underlying asset in period 3 if there are two up moves for the
underlying asset in the previous two periods.

For some options, the net cash flows are set at negative infinity in some periods. For
example, if the construction of a generation planning project requires one period to complete,
then for that project the earliest feasible net cash flows for the option to operate at the
constructed capacity occur in period 2. Therefore, the net cash flows are set at negative
infinity in period 1.

5.7.1 Solution -

In the first 26 states at /=3, the only option that satisfies the capacity constraints is the
option to operate all three power plants. In the last state at =3, four options satisfy the
capacity constraint. They are the option to operate power plants 1, 2 and construct power
plant 3, the option to operate power plants 1, 2 and defer the construction of power plant 3,
the option to operate power plants 1, 2, 3, and the option to operate power plants 1, 2 and sell
power plant 3. In all states at /=2, the above four options are the only options that satisfy
both the capacity constraints and the budget constraints. At /=1, all 64 options satisfy the
budget constraint.

After we examine constraints and obtain feasible options for all states, we examine
the switching costs. There are four feasible options at ~=2. However, only the option to
operate all three power plants and the option to operate power plants 1, 2 and construct ‘
power plant 3 do not incur infinite switching costs to the option to operate all three power

plants in the first 26 states at =3. Since we already operate or construct power plant 3 at /=2,
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it is impossible to switch to the option that involves the construction and the deferral of
power plant 3 in the last state at r=3. Therefore, the options left in the last state at =3 are the
option to operate power plants 1, 2, 3 and the option to operate power plants 1, 2 and sell
power plant 3. Then, at =1, only the option to construct all three power plants and the option
to construct power plants 1, 2 and defer the construction of power plant 3 do not incur
infinite switching costs. By considering switching costs, we reduce the originally 64 feasible
options to less than or equal to 2 options in all states that need to be evaluated through
backward dynamic programming.

By backward dynamic programming, the optimal options are to construct all three
power plants at 7=1, operate all three power plants in all states at /=2, operate all three power
plants in the first 26 states at /=3, and operate power plants 1, 2 and sell power plant 3 in the
last state at =3. The corresponding optimal value of the investment at the beginning of =1
is $ 156.96 millions.

Through this numerical example, we proposed a two-step procedure to reduce the
number of options that need to be evaluated by backward dynamic programming. First, we
eliminated the options that violate the constraints. Then, starting from the last period, we
eliminated the options that induce infinite switching costs. Via this procedure, the size of the

dynamic programming problem can be greatly reduced.

5.8 Concluding Remarks
In this chapter, we first presented an eight-branch lattice model for three correlated
projects. From this model, we constructed a lattice model for multiple correlated projects

(n>2). Then, we compared our lattice model with other lattice models. Next, we
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investigated the roles of correlation coefficients for multiple correlated projects. Finally, an
illustrative numerical example with thrée correlated projects was provided to show how
sequential decisions can be made for a utility with multiple correlated projects.

We reviewed the several different ways to obtain the probabilities for branches of the
lattice. It will be interesting to compare and contrast the advantages and disadvantages of

each way quantitatively.
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CHAPTER 6. GENERATION PLANNING WITH OUTAGE COSTS

6.1 Introduction

In this chapter, wé present an extension of a traditional generation planning model
that is in contrast to the real options models discussed thus far. In this model, we incorporate
both forced utility outage cost and forced customer outage cost. By including the forced
customer outage cost, we attempt to take the customer satisfaction level into consideration in
so far as the generation planning is concerned.

The purpose of traditional generation planning models is to determine the generation
units to be constructed and the amount of power to be produced while the total cost (fixed
and production cost) to a utility is minimized. We note that the traditional models only focus
on relatively easy-to-quantify factors such as fixed and production cost. Forced customer
outage cost and forced utility outage cost are not considered in most of the generation
planning literature.

In this chapter, we develop a generation planning model, explicitly considering forced
customer outage cost and forced utility outage cost. Since utility outage cost is the revenue
loss to a utility, which can be obtained from published data, this chapter focuses on how to
obtain customer outage cost. To obtain customer outage cost, we first review the
quantification approaches for customer outage cost in the literature. Because the diversity of
the quantification approaches presents some difficulties for utilities to make generation
planning decisions (e.g., consistency of assumptions), we suggest a single quantification
approach that can be used in generation planning. This single approach provides us the

customer outage cost per unsupplied MWh. Then, we show how the expected amount of
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outage can be obtained via a linear regression model. By multiplying the customer outage
cost per unsupplied MWh by the expected amount of outage, the expected customer outage
cost can be obtained. Finally, we develop a mixed integer linear programming model
incorporating customer outage cost and utility outage cost for gemeration planning, and
illustrate the key features of the model via a numerical example.

The organization of this chapter is as follows. In Section. 6.2, we review the
quantification approaches for customer outage cost in the literature. In Section 6.3, we
introduce a linear regression model to estimate the expected amount of forced outage. In
Section 6.4, we present how the expected outage cost can be obtained using the results of
Sections 6.2 and 6.3. In Section 6.5, a mixed integer linear programming model with the
expected outage cost is formulated. Section 6.6 provides a comprehensive numerical
example to illustrate the applicability of the model. Finally, con.cluding remarks are provided

in Section 6.7.

6.2 Quantification Approaches for Customer Outage Costs

The quantification approaches for customer outage costs in the literature can be
classified into three groups: (1) proxy approaches, (2) sophisticated econometric approaches,
and (3) survey approaches. This classification depends on the nature of how customer outage
costs are estimated. Proxy approaches apply secondary data (e.g., backup power costs, wage
rates) to estimate customer outage costs. Sophisticated economeetric approaches investigate
the possible loss to firms in case of outage. For example, the possible outage costs to a firm
could include damage to material, forgone profit, and wage paymnent to idle workers if an

outage occurs. On the other hand, survey approaches inquire customers to identify their
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possible loss in different hypothetical scenarios. Finally, we observe that the study of outage

costs has often focused on only a specific customer type such as residential, industrial, and

commercial types. We now elaborate on these specific customer types.

)

)

Residential type

Several papers have argued that the loss of leisure is the main element of
outage costs to residential customers. Munasinghe [38] claims that the
enjoyment of leisure is usually restricted in the evening. Leisure activities
such as television-watching and reading require electricity. Therefore, there
will be very few substitution possibilities for those electricity-dependent
activities if an outage occurs. The same paper also develops a model of
estimating the outage costs to the residential customer type by using a utility
function (i.e., a proxy approach of wage rate). The key idea is that an outage
interrupts the preferred pattermn of consumption and thus leads to a loss. The
author claims that the wage rate could be a good proxy for residential outage
costs.

Industrial type

Bental and Ravid [9] claim, "industrial customers would purchase the backup
generating power if the expected gain from the marginal self-generated kWh
equals the expected loss from the marginal kWh that is not supplied by the
utility. Hence, the expected marginal cost of backup power may serve as an
estimate for the marginal outage costs" (i.e., a proxy approach). The
sophisticated econometric approach is another common approach in the

literature. Tishler [50] develops a model to measure expected outage costs by
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using é production function. In that paper, the costs of outage are contributed
by various sources such as a possible reduction in productivity.
3) Commercial type
Sanghvi [42] finds that some problems may arise in developing an appropriate
approach to estimate the outage costs for commercial customers because the
definition of commercial activities is often unclear. Sanghvi claims that
"large apartment buildings, small pizza parlors, and moderate size
manufacturing firms can be classified as the commercial user types."
However, a large part of commercial activities are production activities. The
outage costs of those activities can be estimated by using the same approaches
as we do for the industrial customer type. Moreover, some commercial
activities, such as large shopping centers, can be viewed as having
characteristics similar to the residential customer type and can be analyzed by
using the residential approaches.
6.2.1 Difficulties in Reconciling Different Approaches
As presented in the previous section, the study of outage costs has often focused on
only a specific customer type. If different approaches are employed for different customer
types, and if the resulting outage costs are aggregated, this could present a serious problem to
the decision maker of the generation planning. For example, let us suppose that Tishler's
model [50] (a sophisticated econometric approach) is applied to estimate the outage costs of
industrial customers. At the same time, let us suppose that Munasinghe's model [38] (a
proxy approach) based on the wage rate is applied to estimate the outage costs of residential

customers. Finally, let us suppose that a survey approach is applied to estimate the outage
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costs of commercial customers. Aggregating the outage costs over all customers in this case
will be difficult to justify because (1) underlying assumptions are contradictory. For
example, Tishler's model assumes that a key component of the outage cost is the foregone
profit of a firm. On the other hand, Munasinghe's model assumes that a key component of
the outage cost is the wage (i.e., revenue) of a resident. Hence, if these outage costs are
aggregated, then such a number reflects neither the profit component nor the revenue
component, making any interpretation inaccurate and misleading. Also, (2) resulting .
outcomes have their own unique tendencies (e.g., survey approaches tend to overestimate;
see e.g., Sanghvi [42]). Therefore, aggregating outage costs from different approaches
makes it difficult for utilities to evaluate generation planning projects analytically and
objectively.

“A few papers have demonstrated that we should be careful when we compare outage
costs. Tishler [50] says, "direct comparison of outage cost estimates from different studies
should be viewed with caution." Moreover, Sanghvi [42] states, "there exists the factors that
sometimes limit the ability to strictly compare different outage cost estimates. Often the
estimates are based upon different methodologies, assumptions, economic and demographic
mixes and local conditions, and for different outage descriptors."

6.2.2 A Single Approach for All Customers: Proxy Approach

Caves et al. [14] note that surveys are the principal source of information on customer
outage costs. Survey approaches inquire customers to identify their possible response in
different hypothetical scenarios. The customers would be inquired how much it would cost

them to adjust to this power outage. However, since most consumers do not have much
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knowledge and quantification experience, it is almost impossible for them to properly
estimate the costs under the hypothetical scenarios.

Sophisticated econometric approaches have been commonly used for estimating
industrial and cqmmercial outage costs. But there will be some difficulties if we apply them
for residential customers. Caves et al. [14] claim that residential customer type could be
viewed as industrial customer type if we consider household activities as a production
process where electricity is an input and leisure activities are outputs. Then residential
outage cost is the market value of those household activities lost due to an outage. Itis,
however, very difficult to obtain a complete listing of household activities and their market
values.

In contrast to the survey approach and the sophisticated econometric approach, the
proxy approach is conceptually simple and the data for proxies are often easily obtainable.
Even though the proxy approach may contain theoretical deficiencies and/or inaccurate
estimates (see e.g., Woo and Pupp [59]), relative to the sophisticated econometric approach,
for a quick and first-order approximation, the proxy approach can be effective and practical.
Furthermore, as the data accumulate, the accuracy of this approach can improve. Hence, in
this chapter, we choose to employ the proxy approach as the single quantification approach
for all customer types.

To illustrate how the proxy approach is applied to quantification of outage costs of all
customer types, we will employ the wage rate as the proxy for the outage cost of residential
customers and the backup power cost as the proxy for the outage cost of industrial and

commercial customers.
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6.2.3 Wage Rate Method for Residential Customers
Munasinghe [38] demonstrates that the wage rate can be a good estimate for
residential outage costs. Specifically, he develops a linear regression model as follows:
OC;=b; +byY; +e; (6.1)
where i, OC;, e;, and Y; are the index of customer, the outage cost per hour for customer i,

the random disturbance term for customer Z, and the net income earning per hour for
customer i.

A partial collection of data provided in Munasinghe [38] is shown in Table 6.1. We
note that the Brazilian currency is used.

Given this partial collection of data, we estimate the coefficients to be b; = 3.097 and
b,=0.922, yielding a good fit with R?>=0.806. Hence, the proxy relation between the outage

cost and the wage rate for customer  is OC;(Brazil) = 3.097 + 0.922Y;. In U.S. currency, this

Table 6.1 Residential consumer survey results (Cr$ per hour)

Net Income Earning  Outage Cost Net Income Earning  Outage Cost
Rate Rate

10.5 12 27.7 20
11.1 15 30.8 35
14.2 10 40.3 30
15.4 20 40.3 30
18.5 25 455 50
18.5 35 48.0 60
19.7 20 55.1 45
21.5 15 64.6 55
21.5 25 64.6 60
246 ' 15 73.9 85
24.6 40

*U.S. $1 =Cr $12.35 (end 1976)
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proxy relation is converted as OC;(U.S.) = 0.251 + 0.922Y; (note that this converted model is
only for illustrative purpose).

We note that OC; is the outage cost per hour for customer i. To incorporate
residential customer outage costs in our generation planning model, we essentially need
outage costs per kWh. In what follows, we show via a numerical example how the outage
cost per kWh can be obtained from the outage cost per hour for customer 7, OC;.

Step 1. Suppose that a utility has obtained the following data for customer i:
The wage rate ¥; : US$11.12 per hour. i.e., the corresponding outage cost OC; is

US$10.5 per hour (because OC; = 0.251+0.922Y)).

The total number of leisure hours: 1000 hours per year.
The total electricity consumption during leisure periods: 700 kWh.

Step 2. The average power consumption in leisure activities for customer i can be calculated
as

700 kWh
1000h

=0.7kW

Step 3. Outage cost per kWh for customer 7 can be calculated as

US$10.5 per hour
0.7 kW

= USS$15 per kWh = US$15000 per MWh

6.2.4 Backup Power Cost Method for Industrial and Commercial Customers

Thus far we have shown how the outage cost is estimated for the residential
customers via the wage rate method. Now we will show how the outage cost is estimated for
the industrial and commercial customers via the backup power cost method. This method is

similar to the work by Bental and Ravid [9].
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The backup power cost method assumes that customers act rationally and would like
to insure themselves against the damage caused by electricity outages. Because insurances
are unavailable, industrial and commercial customers will acquire backup generators.
Therefore, the costs of self-generating a kWh of the unsupplied utility electricity may serve
as an estimate for the expected avoided outage costs due to this self-generating kWh.

The costs of generating backup power consist of two items: the capacity cost of
constructing the backup facility, and operating cost. So the average outage costs per kWh

can be expressed as
b
AC=—+v 6.2)
H

where b, H, and v are the annual capacity cost of backup facility per kW, the expected
duration of outage per year, and the operating cost of generating power per kWh,
respectively. Let us assume, in this section, that the interest rate is 7% and the capacity cost
of backup facility per kW is $150. Also, we employ straight-line depreciation over ten years,
and the tax rate is 20%. Then the annual capacity cost of backup facility per kW, b, can be

calculated as

b=150(4/P))3 10100 18.357

where ( 4/ P) is the uniform series worth of a present sum and the value of (4/P);;* is

found as 0.14238 in engineering economy textbooks. Other key parameter values are as
follows: The expected duration of outage per year, H, is taken to be eight hours per year.

Operating cost per kWh, v, is $0.5. Using the above equation, the average outage cost per
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Table 6.2 Average outage cost

H 8 16 24 48 96
AC 2.79 1.65 1.26 0.88 0.69

kWh, AC, is $2.79. Table 6.2 below shows the expected durations of outage per year and the

corresponding average outage cost.

6.3 Expected Amount of Qutage
The proxy approach provides us a simple and quick tool to estimate customer outage

costs per unsupplied kWh. To incorporate outage costs into a capital budgeting model for
generation planning, the expected amount of outage in MWh is needed. Hence, first, we
show how the expected amount of outage in MW can be estimated via a linear regression
model.

- Due to the random nature of outage, Ammons [1], Irisari [24], Ghajar and Billinton
[19], Niimura and Kermanshahi [39], and Bloom [11] have demonstrated that the expected
amount of outage can be computed from the available capacity and demand distributions.
They have presented that the levels of customer demand and available capacity will
determine the expected amount of outage. From this basis, we construct a linear regression
model consisting of the expected amount of outage as the dependent variable and the levels
of customer demand and available capacity of a utility as the independent variables. The

linear regression model is given by
J
FOit = azaerj:yj + Piz +}’ (63)
J=1

where
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J =the index of either an existing generation unit or a generation expansion
planning project. j=1,..., } are for existing generation units,
Jj= ; +1,..., J are for generation expansion planning projects
i =the index of intervals in a period, e.g., peak/off-peak durations, i = 1,...,/
t =the index of period of time, e.g., year,z =1,...,T
FO; =the expected amount of outage at a point in time in interval / of period ¢

(MW) cumulative of all customer types

ajc =the availability factor for generation unit/ in periodz, 0<a, <1

Uy =the upper bound on production level (capacity) on generation unit j in
period t (MW)

Y =the binary variable indicating whether generation expansion planning

project; is to be constructed. For j =1,..., 7, y;=1. For
J =}+1,..., J, y; =1 implies construction, y; = 0 implies no

construction
P; =the average customer demand at a point in time in interval i of period ¢
MW)
a, 3,y =the coefficients needing to be estimated
The expected amount of outage to a specific customer type can be obtained by
multiplying the expected amount of outage by the fraction of the total energy consumption
consumed by that specific customer type (see e.g., Lo et al. [31]). Hence, the expected

amount of outage in MWh for customer type w in interval i of period ¢ is

kit F Ohy (6.4)
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where

w =the index of customer type (1: residential type, 2: commercial type, 3:
industrial type)

K =the fraction of the total energy consumption consumed by customer type w

3
in period ¢ (D_k,, =1)
w=1
hy =the number of hours in interval i/ of period ¢

6.4 Expected Outage Cost

We note that the expected outage cost in our model consists of expected utility outage
cost and expected customer outage cost. Expected utility outage cost is the expected revenue
loss to a utility. The expected revenue loss to a utility can be obtained by multiplying the
expected amount of outage in MWh by revenue per MWh. Expected customer outage cost
can be obtained by multiplying the expected amount of outage in MWh by customer outage
cost per unsupplied MWh. Hence, the expected discounted outage cost from customer type

w in interval i of period ¢ is

(Cit + oYt F Ouhiy (6.5)
where
CY  =the discounted revenue per MWh to a utility from a representative customer
type w in interval i of period ¢
CS, =the discounted outage cost per unsupplied MWh for a representative

customer of customer type w in interval i of period ¢ (i.e., C{, canbe
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estimated by the wage rate method, Cf, and Cg, can be estimated by

the backup power cost method)
Hence, the total expected discounted outage cost for all customer types over the entire

planning horizon is

> D D(CY, +CE )k, FO,h, (6.6)

=1 i=1 w=l

6.5 The General Model

The objective of this model is to minimize the total cost consisting of discounted
fixed, production, utility outage, customer outage, and outside purchase costs minus the
discounted revenue from selling any power outside. This objective is subject to the
constraints of production, purchase, sale, demand, budget, and reliability. The decision
variables representing generation expansion planning projects are binary (0-1) for the project
selection purpose. The decision variables representing the amount of power produced, the
portion of construction budget not used, the amount of outside purchase, and the amount of
outside sale are all continuous variables. Hence, the resulting mixed integer linear
programming model is formulated as follows:

Minimize
y,,xﬂ,,S OF,,0S,

3

J r I J Tr I
2S5+ D2 2 Fux i + 2. 2.2 (Ch + CLIKFOR,

J=1 =l (=1 j=1 =t i=l w=l
T I T I 6.7)

+ZZPCitOthil —ZZS OSnrhu

t=1 i=l =1 =1

Subject to
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thyj Sxp = aerjryj (6.8)
0<OP, <OF,_ .., (6.9)
0<0S,<0S,__. (6.10)
J
OSir = ijit + OR{ -k, (6.11)
=1
J
S, —(A+7)S,+2.C,y; =B, (6.12)
j=t
J
>.a,U,y;,=2(1+m)P, (6.13)
J=1
>y, <1 (6.14)
jeld,}

y;=1 for j = 1,...,_7

y; {0} forj=j+l..,J (6.15)
S,20,x, 20,0F, 20,05, 20 (6.16)
J=L.,J
i=1,.J1
t=1..,T
k=1,., K
where
B, =the construction budget available in period ¢
C = the construction expense required for constructing generation expansion

Jt

planning project j in period ¢
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J; =the sum of discounted fixed costs (e.g., taxes, insurance, maintenance,

etc.) associated with generation unitj over the planning horizon

F,  =the discounted production cost (i.e., variable cost and not fixed cost) per

unit of energy output associated with generation unit ; in interval i of

period ¢ ($/MWh)

L, =the lower bound on production level on generation unitj in period : (MW)
m = the reserve margin for extra demand above 7,
OP,_.... =the maximum amount of power can be purchased in interval / of period ¢

MW)

OS,, _ . =the maximum amount of power can be sold in interval / of period ¢ (MW)

PC, =the discounted outside purchase cost in interval i of period ¢ ($/MWh)
v, =the rate of return on short term investments for period ¢, r, =0

OP, =the amount of outside purchase in interval i of period 1 (MW)

0S, =the amount of outside sale in interval i/ of period ¢ (MW)

S, =the construction budget unused in period ¢, S,=0

SP, =the discounted selling price per unit of energy output in interval i of

period ¢ ($/MWh)

{J.} =the set of the indices of the generation expansion planning projects
representing all possible beginning years of the same potential generation
unitk (k= 1,....K)

= the power produced by generation unitj in interval i of period ¢t (MW)

X jie
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P

4

=the peak demand during period : (MW)

In this formulation, we consider both existing generation units and generation
expansion planning projects. We note that a generation expansion planning project
represents a particular type of generation unit to be constructed at a given time with a given
capacity. If the value of a binary decision variable is one, the corresponding project is
selected for construction. If the value of a binary decision variable is zero, the corresponding
project is not selected for construction. On the othe; hand, we note that the values of bina._ry

decision variables corresponding to the existing generation units are fixed at one.

The objective function is the sum of discounted fixed cost (Zj=l f;¥;), discounted
production cost (Z Z . Z; L FaX e )s discounted utility and customer outage cost
( ZH Z‘_l Zw_[ (CY, +CE)k,, FO,h, ), and discounted outside purchase cost
(Zt_ Z PC_,OP,h, ) minus discounted revenue from selling any power outside

(Z . Z‘ SP,0S,h, ). We note that the objective function is measured in present worth

because the planning horizon can be expensive (ten years or more). We further note that, for
computational tractability, we choose a linear production cost function (cf., nonlinear
production cost function; see e.g., Ammons and McGinnis [2]). The linear production cost
function can be found in numerous papers (see e.g., Anderson {4], Hobbs [20], and Hobbs

and Centolella [21]).
Constraints (6.8) state that the amount of power to be produced is bounded from
above by the available capacity and bounded from below by the minimum required

production level for each generation unit. We note that these constraints are non-trivial only
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if y; =1. Furthermore, we note that when a generation expansion planning project is under
construction, the corresponding L; and a;,U, will be set at zero. This implies that no

power will be produced during the construction period.

Constraints (6.9) and (6.10) state that the amount of outside purchase and the amount
of outside sale cannot exceed some given upper limits. These limits may be determined by
the contracts between the utility we are modelling and other utilities. In Zhang et al. [60],
Christoforidis et al. [16], and Bart et al. [6], an upper limit for each purchase or sale is
considered. We note that, for simplicity, in this chapter we do not distinguish each purchase
or sale. Instead, we have the upper limits for the amount of outside purchase and the amount
of outside sale for an entire time interval.

Constraints (6.11) state that the sum of power produced plus the amount of outside
purchase mjn;.ls the amount of outside sale is greater than or equal to the expected customer
demand. As the electric power industry becomes more competitive, there will be an
increasing number of opportunities for outside purchase and outside sale. These constraints
capture the utilities’ attempt to satisfy customer demand via self-producing and outside
purchase. Also, these constraints consider the opportunities of selling extra power to other
utilities.

Constraints (6.12) state that in each period (i.e., year) a certain amount of budget is
available for the construction of generation expansion planning projects. The construction
budget that is left in the current period will be carried forward to the next period for
construction. The construction budget carried forward earns interest at some specified rate of

return on short term investment. We note that B,,C,,, and §, are not measured in present
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worth. We also note that, for generation expansion planning projects, the corresponding

C;,'s will be set at zero before the start of construction and after the end of construction. For
existing generation units, all C,,'s are set at zero because no construction expense is
required.

Constraints (6.13) state that the sum of available capacity is greater than or equal to

the sum of peak demand and reserve margin. The parameter P, is the peak demand in period

¢t and can be viewed as the maximum amount of demand among all intervals in a same
period. We note that both outage cost and reserve margin (for reliability purpose) are
considered in our model. Due to the random nature of outage, the improvements in reliability
can help utilities reduce the expected amount of outage but cannot completely eliminate it.
Hence, we incorporate the outage cost in the objective function and have reserve margin as
reliability constraints in our model.

For a potential generation unit £ (k = ,...,K), there may be a multiple number of
possible beginning years of construction. Each possible beginning year of construction
represents a generation expansion planniﬁg project. Hence, a potential generation unit k may

have a multiple number of generation expansion planning projects. The set J, in constraints

(6.14) consists of the indices of the generation expansion planning projects for the same
potential generation unit & We assume that once a project begins, the project will continue
to completion. Constraints (6.14) state that at most one generation expansion planning

project (one beginning year) can be selected for each potential generation unit.
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Constraints (6.15) state that there are ; existing generation units and J —}
generation expansion planning projects. Finally, constraints (6.16) state that the continuous

decision variables are nonnegative.

6.6 Numerical Example

In this section, we illustrate some key features of the model via a hypothetical
numerical example. In this numerical example, we have a two-period planning horizon (7 =
2) with only one interval 7 (i.e., the interval is one year). Therefore, the subscript i is ignored
in the notations of this example. There are two existing generation units and two potential
generation units (7 =2,K =2). We assume that all potential generation units can be
constructed at any period during the planning horizon. Hence, there are four generation
expansion planning projects (i.e., J = 6, the first two are existing generation units, the last
four are generation expansion planning projects). Utilizing the notation J, defined in
previous section, we note that: fork =1, J, = {3,4}, fork =2, J, = {5,6} . This implies that
the potential generation unit 1 is associated with projects 3 and 4. Similarly, the potential
generation unit 2 is associated with projects 5 and 6. We note that this two-period example
can be extended to a large-scale planning problem which may span many periods. We note
that a period may be much longer than a year. This period represents a time framework at
which a critical generation expansion planning decision can be made.

For simplicity, in this model, we assume that in any period a project can be selected
for construction and the power will be available in the same period (i.¢., the duration of a

period may be much longer than a year). We note, however, it is possible to elaborately
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model the construction aspect by splitting the period into a multiple number of years, and
extend the model accordingly (e.g., if a project is under construction for a particular year,
then there will be no production during the year.).
6.6.1 Input Data

First, we need to estimate the coefficients of the linear regression model for the
expected amount of outage. For this, we employ the data in Wang and Min [54] to produce

Table 6.3.

Table 6.3 Qutage data

Expected amount of forced Demand (MW) Capacity (MW)
outage (MW)

3.1585 126 200
3.62 81 125
2.8324 89 100
3.33 100 150
1.2245 106 150
2.779 69 75
4.75 95 150
4.0875 ‘ 115 150
0.39 13 25
1 20 50
6.175 115 150

Given Table 6.3, we can estimate the coefficients «, £, and y of the linear
regression model. By using the SAS software package (SAS Institute, Inc. [44]), we estimate
the coefficients as a =-0.009502, f = 0.044012 , and y =0.459070.

The hypothetical input data (similar to those found in Wang and Min [54]) for

existing generation units and generation expansion planning projects are shown in Tables 6.4
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and 6.5, respectively. The reserve margin (m) is assumed to be 0.05. The periodic data are

provided in Table 6.6.

In what follows, we assume the data is applicable to period 1 as well as period 2. We

need data to estimate customer outage cost and utility outage cost. To estimate the outage

Table 6.4 Data for existing generation units

Fixed cost (US§) Production Capacity Lower bound Availability
cost($/MWh) (MW) factor
Unit 1 f1=5735640 F, =17 U, =1073 L, =50 a,; =0.85
F, =17 U,, =1,073 L, =35 a;; =0.90
Unit 2 f2=2,500,000 F, =17 U,, =598 L, =20 a,, =0.76
Fyy =17 Uy =600 Ly, =30 ay, =090
Table 6.5 Data for generation expansion planning projects
Fixed cost Production Capacity Lower bound Availabilit Construction cost
(US$) cost($/MWh) (MW) (MW) y factor (US3)
Potential f5 =5,000,000 F, =17 Uy =900 Ly, =45 a;; =095 Cj;; =10,000,000
generation Fy, =17 Us, =900 Ly, =45 as; =095 C; =0
unit 1
constructed
in period 1
Potential fa =2,500,000 F,; =0 Uy =0 Ly =0 ag = Cq =0
gef}teiamn Fy, =17 Ugmy =900 Ly, =45 a, =095 C,, =11,000,000
uni
constructed
in period 2
Potential fs =3,000,000 Fj, =18 Us, =660  Lg; =35 as, =095 Cg =15,000,000
generation Fs, =18 Us, =660  Ls, =35 a5; =095 Cs, =0
unit 2 - -
constructed
in period 1
Potential f6 =1,SO0,000 Fsl =0 Usl =0 le =0 g = C61 =0
generation Fe, =18 Ug, =660  Lg =35 ag =095 Cg =16,000,000
unit 2
constructed

in period 2
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Table 6.6 Periodic data
h‘ (hour) P Cr SPt OPt—ma.x OSl-rmx P{ r Br
($MWh) ($/MWh) (@MW) MW) ™MW (USS)
Period 1 8,760 30 30 1,000 1,000 1,000 0.1 25,000,000
(t=1)
Period2 8,760 30 30 1,000 1,000 1,000 0.1 25,000,000
(t=2)

cost for the residential customers, we first assume that the wage rate for a representative
residential customer is US$11.12 (see e.g., U.S. Bureau of Labor Statistics [52]). Then, we
apply the steps of the wage rate method and the data provided in the section of the wage rate
method. The outage cost per MWh for a representative residential customer is calculated as
US$15000 (CS =15000). To estimate the outage cost for the commercial and industrial
customers, we apply the backup power cost method. We assume that the expected duration
of outage per year for a representative commercial and industrial customer is 16 hours
(hypothetical). Then, from Table 6.2, the outage cost per MWh for a representative
commercial and industrial customer is US$2790 (C5, = C5 =2790).

Since utility outage cost per unsupplied MWh is essentially the revenue per MWh to a
utility, we need data for the revenue per MWh (price of electricity) from all customer types.
Based on some government publications, the revenue per MWh to a utility from a
representative residential, commercial, and industrial customer is US$84, $77, and $47 (see
e.g., U.S. Bureau of the Census [53]), respectively (C,, =84,C5 =77,Cs, =47). Finally,
the fraction of the total energy consumption consumed by residential, commercial, and

industrial customers are 31% (k,,), 19% (k%,,), and 50% ( k,, ), respectively (see e.g., Lo et

al. [32]).
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6.6.2 Optimal Solution

We solve this example by using the LINDO software package (LINDO S'ystems Inc.
[29]). The details of the optimal solution are as follows:
For the existing generation units 1 and 2, we have the binary variables y, = y, =1. For the
potential generation units 1 and 2, it is optimal to be constructed in period 1 (i.e.,

y;=1y,=0, y, =1, y, =0). The value of the objective function is US$1,998,480,429

(recall this figure is not for one year because each period will consist of multiple years).

As for the optimal solutions for the continuous variables for period 1, we have the
following. The power produced by the existing generation units 1 and 2 is 655.52 MW and
454.48 MW, respectively (x;, = 655.52, x,, =454.48). The power produced by the
potential generation units 1 and 2 is 855 MW and 35 MW, respectively (x;, =855,
x5, =35). The amount of outside purchase is 0 (OP, = 0). The amount of outside sale is
1,000 MW (OS, =1,000). The construction budget unused is 0 (S, =0).

As for the optimal solutions for the continuous variables for period 2, we have the
following. The power produced by the existing generation units 1 and 2 is 570 MW and 540
MW, respectively (x,, =570, x,, =540). The power produced by the potential generation
units 1 and 2 is 855 MW and 35 MW, respectively ( x,, =855, x5, = 35). The amount of
outside purchase is 0 (OP, =0). The amount of outside sale is 1,000 MW (OS§, =1,000).
The construction budget unused is US$25,000,000 ( S, = 25,000,000).

We observe that both of the potential generation units are constructed in period 1.

Since our model provides the opportunities for outside purchase and sale, the purchase cost

and the selling price would influence a utility's decisions on the amount of power produced.
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In our example, relative to the production price, the selling price is high. We believe that this
high selling price makes a utility willing to produce more power than the customer demand,
and sell the extra power to other utilities. Since it is profitable to sell in both periods 1 and 2,

the optimal decision is to construct and operate from period 1 on.

6.7 Concluding Remarks

In this chapter we first examined the quantification approaches for customer outage
cost in the literature. Next, we showed how the e).cpected amount of outage can be obtained
via a linear regression model. The multiplication of the outage cost per unsupplied MWh by
the expected amount of outage provides the expected customer outage cost. Similarly, the
multiplication of the revenue per MWh to a utility by the expected amount of outage
provides the expected utility outage cost. Expected customer outage cost and expected utility
outage cost are the components of expected outage cost. Finally, we developed a mixed
integer linear programming model incorporating expected outage cost for generation
planning. Via this model, the selection of generation expansion planning projects, the amount
of power produced, the portion of construction budget not used, the amount of outside
purchase, and the amount of outside sale can be determined.

For future research, it would be worthwhile to rigorously determine quantitative
conditions under which the traditional generation planning is still recommendable instead of
the generation planning models under uncertainties such as the models based on the real

options approaches.
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CHAPTER 7. COMPARISONS OF REAL OPTIONS APPROACH VS.

TRADITIONAL APPROACH FOR GENERATION PLANNING

7.1 Introduction

In this chapter, we compare the multiple-project multiple-option model in Chapter 5
with the traditional generation planning model in Chapter 6 to illustrate the key features of
the real options approach vs. the traditional approach for generation planning. Such an
attempt is a first step toward understandiné the two different approaches.

The multiple-project multiple-option model in Chapter 5 is useful when there are
multiple projects and the projects are correlated. By correlation, we mean that the market
values of the completed power plants are correlated. Via this model, we can determine the
optimal sequential strategic decisions over options for correlated projects.

In the traditional generation planning model in Chapter 6, we incorporated both
forced utility outage cost and forced customer outage cost. By including the forced customer
outage cost, we attempted to take the customer satisfaction level into account. Via this
model, we can determine the generation units to be constructed and the amount of power to
be produced while the total cost to a utility is minimized.

This chapter is organized as follows. Section 7.2 provides generation planning
process based on the real options approach and the traditional approach. Sections 7.3, 7.4,
and 7.5 compare the multiple-project multiple-option model and the traditional model in
terms of decision variables, objective function, and constraints, respectively. Sections 7.6

and 7.7 compare the multiple-project multiple-option model and the traditional model with
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respect to competition and usage aspects, respectively. Finally, concluding remarks are

provided in Chapter 7.8.

7.2 Generation Planning Process Based on the Real Options Approach vs. the
Traditional Approach
Figure 7.1 depicts the generation planning process based on the real options

approach. Figure 7.1 is explained by the following steps focusing on the multiple-project

multiple-option model in Chapter 5.

Step 1. We focus on strategic decisions for a utility. These decisions are represented by
strategic options such as the options to construct, to defer, and to expand the
constructed capacity level.

Step 2. Since strategic decisions are long-term decisions, we consider the market values of
the completed power plants as the underlying assets for the options (see e.g., [48]).

Step 3. Based on the studies in [7], [48], [49], the movement of the market values of the
completed power plants can be modeled as geometric Brownian motion processes.

Step 4. We construct lattice models to approximate the geometric Brownian motion
processes. We note that, for example, Black-Scholes option-pricing model is a closed
form solution for the value of a single European call option. However, closed form
solutions are rare for most of partial differential equations generated for options.

Step S. Since options are the derivative assets of the underlying assets, we derive additional
lattices for the options as in the case of the underlying assets in Step 4. In a lattice,
the net cash flows representing the payoffs of an option under different states (i.e.,

nodes in a lattice) can be estimated by using the values of the underlying assets.
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Determine strategic options for each project

Determine an underlying asset for the- strategic options for each
project

Determine a stochastic process for the underlying asset for each
project

Construct a lattice model to approximnate the stochastic process
for the correlated undexlying assets

Construct additional latticess for the options

Formulate a backward dynamic programming model that
maximizes the value of the investment

Optimal generation planning over the options

Figure 7.1 Generation planning process based om the real options approach
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Step 7.
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We utilize a backward dynamic programming formulation over the lattice, subject to
constraints such as budgets and capacity, to make sequential strategic decisions over
options.

By maximizing the value of the investment that represents the sum of the
accumulated values of options for each project, we will determine the optimal
sequential strategic decisions over the options and the corresponding value of the
investment.

Thus far, we have examined the generation planning process based on the real options

Approach. Let us now proceed to investigate the generation planning process based on the

traditional approach (see Figure 7.2). Figure 7.2 is explained by the following steps focusing

on the traditional model in Chapter 6.

Step 1.

Step 2.

The changes in the electric power industry encourage competition, which in turn
encourages more attention to customer satisfaction. We consider the quantified
customer outage cost as a good representation for customer satisfaction level. The
quantified customer outage cost can be obtained by multiplying customer cost per
unsupplied MWh by the expected amount of outage, which is a function of customer
demand and available capacity (see e.g., [19], [24]).

In the model, we consider both binary decision variables and continuous decision
variables (see e.g., [2], [20], [54], [58]). Binary variables are for the project selection
purpose. Continuous variables represent the amount of power produced, the portion
of construction budget not used, the amount of outside purchase, and the amount of

outside sale.
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Quantify customer outage cost to represent the customer
satisfaction level

Determine decision variables such as projects to be selected,
amount of power to be produced

Formulate a mixed integer linear programming model
incorporating the quantified customer outage cost

Optimal generation planning over the integer and continuous
decision variables

Figure 7.2 Generation planning process based on the traditional approach

Step 3.

Step 4.

The objective of our model is to minimize the total cost consisting of discounted
fixed, production, utility outage, customer outage, and outside purchase costs minus
the discounted revenue from selling power outside (see e.g., [4]). The objective is
subject to the constraints of production, purchase, sale, demand, budget, and
reliability.

The optimal solution of the model will help us make the following decisions: which
projects and when the projects should be constructed. For both the selected projects
é.nd the existing generation units, the amount of power should be produced, the

amount of outside purchase and outside sale should be obtained.
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7.3 Comparisons Based on Decision Variables

In the multiple-project multiple-option model, we focus on strategic generation
planning (i.e., no tactical generation planning). All possible strategic decisions are
represented by strategic options such as construction, expansion, and reduction. The solution
of the backward dynamic programming formulation provides the optimal sequential strategic
decisions over the planning horizon.

On the other hand, the decision variables in the traditional model are for strategic
generation planning and some degrees of tactical generation planning. The binary decision
variable will tell us which projects and when the projects should be constructed, which
represents strategic generation planning. Furthermore, the continuous decision variables will
tell us, for example, how much power should be produced in each period, which represents

some degrees of tactical generation planning.

7.4 Comparisons Based on Objective Function

The objective function in the multiple-project multiple-option model represents the
value of the investment that represents the sum of the accumulated values of options for each
project . By maximizing the objective function for each state in each period subject to
constraints, starting from the last period, we will determine the optimal sequential decisions
over the options.

On the other hand, the objective function in the traditional model represents the total
cost to a utility. This total cost consists of discounted fixed, production, utility outage,

customer outage, and outside purchase costs minus the discounted revenue from selling
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power outside. By minimizing the total cost to a utility subject to constraints, we will
determine the optimal set of projects to be constructed, the optimal amount of power to be

produced, the optimal amount of power to be purchased, and the optimal amount of power to

be sold.

7.5 Comparisons Based on Constraints

In the multiple-project multiple-option model, there are constraints associated with
each state in each period. The constraints may include budgets and capacity requirement
constraints. For example, under an unfavorable market condition, a utility may not have
enough budgets to construct all proposed projects at the same time. Therefore, there wﬂl exist
a budget constraint that excludes the option to construct all projects from the set of feasible
options.

In the traditional model, there also exist constraints for the available budget for
construction and constraints for capacity requirements. Moreover, there exist constraints for
some degrees of tactical decisions. For example, the power produced by a generation unit in

a period cannot exceed its capacity.

7.6 Comparisons Based on Competition Aspects

The major consequence of competition in the electric power industry is that the price
of electric power may be determined by competitive market mechanisms. In such a case, the
price of electric power as well as the corresponding rate of return can be much more
uncertain than before. In this section, we compare the multiple-project multiple-option

model and the traditional model with respect to competition aspects.
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Under the new economic uncertainties, the two factors in decision making that have
become much more significant are: financial risks and managerial flexibility. In the
multiple-project multiple-option model, financial risks are incorporated by risk-neutral
probabilities. Furthermore, the possible market conditions are represented by a lattice model.
By solving a backward dynamic programming model over the lattice, we determine the
optimal strategic decisions under different market conditions. This provides the managerial
flexibility.

On the other hand, in the traditional model, we apply an indirect approach to reflect
the competitive environments. Under competition, a utility may pay more attention to
customer satisfaction. The customer satisfaction level can be represented by customer outage
costs. Therefore, we consider customer outage costs as part of the total cost to a utility that

should be minimized.

7.7 Comparisons Based on Usage Aspects

With the speed and magnitude of deregulation of generation aspect differing from a
state to another state in the U.S., the multiple-project multiple-option model is highly
recommendable to the states with the most progress toward deregulation. Maschoff et al.
[36] say, “in the past two years, more than 20,000 megawatts of generation assets have been
sold, with another 20,000 MW announced. During the next five years, it is expected that
70,000 to 140,000 MW will change hand”. Also, Loehr and Rubin [32] say, “Plans have
been announced for construction of about 51,600 MW of merchant generation by the end of
2001”. Under such dramatic environments, the financial risks and the managerial flexibility

provided by the multiple-project multiple-option model are vital.



117

On the other hand, the traditional model is most recommendable to the states with
minimum progress toward deregulation. Moreover, our traditional model incorporates
customer outage cost which reflects customer satisfaction level. At the 1999 EPRI Summer
Seminar, Electric Power Research Institute (EPRI, Palo Alto, California) formal conclusions
say, “North America is closer to the edge, in terms of the frequency and duration of severe
power outages, than at any time in the last 35 years”. Therefore, a utility that can reduce
customer outage costs will more likely obtain better customer satisfaction, which will in turn

enhance a utility’s strength in competition.

7.8 Conclusions

In this chapter, first, we explained the generation planning process based on the real
options approach and the traditional approach. Then, we compared the multiple-project
multiple-option model with the traditional model in terms of decision variables, objectives,
constraints, competition, and usage. We note that there are other models based on the real
options approach and the traditional approach. Hence, additional comparisons can be made.
The models compared in this chapter, however, can be viewed as a first step toward
understanding the differences and common aspects of these two approaches.

For future research, it would be interesting to develop a systematic method to
determine the most suitable method for generation planning (i.e., the real options approach

vs. the traditional approach) based on the magnitude of deregulation.
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CHAPTER 8. CONCLUSIONS

8.1 Summary

The electric power industry in many parts of U.S.A. is now undergoing a transition
from a regulated monopoly toward an uncertain, competitive market. The magnitude of
uncertainties accompanying this transition is truly substantial in generation planning. It is
thus highly desirable to help utilities quantitatively and objectively in their decision making
process for generation planning.

In this dissertation, to help utilities facing generation planning decisions under market
uncertainties, we designed and analyzed a series of mathematical models based on the real
options approach.

In view of the real options approach, under market uncertainties, the realization of
cash flows often differs from what utilities have expected initially. As new information
arrives and uncertainties about market conditions are resolved, the utility management may
adjust its strategy to capture future opportunities. Thus, it is highly beneficial for utilities to
quantitatively examine various options available in order to exploit the flexibilities that exist
and/or may exist in the future.

In Chapter 2, we developed a multiple-project single-option model. In this model,
each project has an option to expand its capacity. The Black-Scholes option-pricing formula
(table) is used to determine the value of an option. If the project is selected, the project’s
option becomes available. Thus, the value of a project is represented by the expanded net

present value (NPV) which consists of traditional NPV and the value of the option. Then, we
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determined the optimal set of projects by maximizing the expanded NPV of selected projects
subject to budget constraints and option availability constraints.

The multiple-project single-option model would be useful when there is essentially
one dominant option for each project and the projects are independent. However, when there
are multiple options for a project, this model may no longer be applicable. For such cases, in
Chapter 3, we developed a single-project multiple-option model. In this model, a generation
planning project represents a sequence of options. For example, during the construction
stage, a utility has the option to construct a power plant or the option to defer the
construction. During operating stage, a utility has the option to expand the constructed
capacity level or sell the power plant at its salvage value. The selection of an option in one
period will affect the selections of options in subsequent periods. Therefore, we employed
backward dynamic programming over a binomial lattice to determine the optimal options for
a project and the corresponding project value.

Moreover, in the single-project multiple-option model, a utility determines which
option to be exercised based on market conditions. Market conditions are represented by the
market values of a completed power plant. The market value of a completed power plant can
be modeled as a geometric Brownian motion (GBM) process. To avoid complex partial
differential equations that may not have analytic solutions, we utilized a binomial lattice
model to approximate the GBM process.

The single-project multiple-option is most relevant if there is essentially one
important project to be considered. However, when there are multiple projects to be
considered, this model may no longer be applicable. We discussed real options models for

independent projects in Chapter 2. Let us now proceed to discuss real options models for
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correlated projects. In Chapter 4, we developed a two-project multiple-option model. Itis
assumed that the market values of the two completed power plants are correlated. By
employing backward dynamic programming over a four-branch lattice that approximates the
combination of two correlated GBMs, we determined the optimal options for the two projects
and the corresponding value of the investment. Furthermore, based on the assumption that
the two completed power plants are correlated, we investigated the roles of the correlation
coefficient in the value of an option and decision making.

Next, in Chapter 5, we extended the two-project multiple-option model to a multiple-
project multiple-option model. In this model, the market values of the multiple completed
power plants are assumed to be correlated. First, we developed a multiple-branch lattice
model to approximate the combination of multiple correlated GBM processes. Then, as in
Chapter 4, we employed backward dynamic programming over the lattice to determine the
optimal options for the multiple projects and the corresponding values of the investment.
Next, we investigated the roles of the correlation coefficients among projects in decision
making and the value of an option.

In addition, we provided a traditional generation planning model in Chapter 6 for
comparison purposes to the real options models. In this traditional model, we incorporated
the outage costs of customers. Current changes in the electric power industry encourage
competition, which in turn encourages more attention to customer satisfaction. By including
the customer outage cost, we attempted to take the customer satisfaction level into account.
Finally, various comparisons between the real options approach and the traditional approach

for generation planning are provided in Chapter 7.
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We hope that the series of models as well as the data and illustrative numerical
examples in this dissertation will help utilities to effectively and efficiently decide and

manage generation planning projects with market risks.

8.2 Future Research

There are various worthy extensions possible based on this dissertation. Three
possible areas of extensions discussed here are: strategic vs. tactical options, transmission
planning, other stochastic models, and other approximation models.

8.2.1 Strategic vs. Tactical Options

One extension will be the inclusion of tactical decisions in generation planning. In
this dissertation, we focused on strategic decisions such as the options to construct and
expand. However, in addition to strategic decisions, a utility also makes tactical decisions
such as the options to turn on or turn off a generation unit based on a short-term observation
on the spot market.

Strategic options usually involve enormous capital investments. Therefore, it is
reasonable to consider the market value of a completed power plant as the underlying asset
for strategic options. Based on a reiatively long-term observation on the value of a
completed power plant, a utility makes strategic decisions. On the other hand, tactical
decisions are usually determined based on a relatively short-term observation on the electric
power spot market. Therefore, electric power price and fuel price may be the appropriate
underlying assets for tactical options.

It is likely that both electric power price and fuel price follow a process other than

GBM process. Then, the problem becomes how to consider both strategic and tactical
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options in a single model when the two types of options evolve according to different
stochastic processes. Furthermore, if the single model can be developed, it will be interesting
to investigate the impacts of such a combination on decision making in generation planning.

Another interesting problem will be the reconciliation of the stochastic process for the
underlying asset for tactical options and the stochastic process for the underlying asset for
strategic options. Since it is likely that tactical decisions will have accumulated impacts on
strategic decisions, the accumulated value of tactical options during a period may provide a
valuable information for making strategic decisions in a later period. Therefore, it would be
worthwhile to investigate the relationship of the stochastic process for the underlying asset
for tactical options and for strategic options.

8.2.2 Transmission Planning

In this dissertation, we focused on the developments of project planning and
management models with risks for generation planning. However, transmission planning is
highly related to generation planning and thus cannot be immune to the economic
uncertainties existing in the current electric power industry. Therefore, it is also desirable to
apply ourrproj ect planning and management models with risks to transmission planning as
well.

For example, the value of a tré.nsmission network is also highly stochastic depending
on the transmission volume and time. Given the stochastic market value, the construction
process of the transmission network may benefit from a real options approach.

Finally, another extension would be the integrated planning of generation and
transmission. Traditional generation planning models have considered both generation

planning and transmission planning in a single large-scale mathematical model, because they
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are very related. Therefore, it will be worthwhile to consider generation planning and
transmission planning in a single management model.
8.2.3 Other Stochastic Models

In Subsection 8.2.1, we discussed the strategic vs. tactical options and explained that,
for strategic options, the value of a completed power plant would be appropriate as the
underlying asset. At the same time, for tactical options, the electricity price would be
ap-propriate as the underlying asset.

We note that the price of electricity, which is stochastic in an uncertain market, can
be utilized to make strategic, static (cf. dynamic as in real options models) decisions on
generation planning. For example, a mean-variance approach (see Appendix B) can be
utilized.

In the near future, it would be interesting to compare and contrast the static mean-
variance approach and the dynamic real options approach to derive managerial insights for
generation planning.

8.2.4 Other Approximation Models

In Section 5.4, we reviewed several different ways to obtain the probabilities for
branches of the lattice. One interesting problem is the comparisons of the advantages and
disadvantages of each way quantitatively.

In addition, lattice models are not the only methods to approximate the GBM process.
Hence, another interesting problem would be the comparisons of the lattice models with

numerical methods such as Monte Carlo simulation.
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APPENDIX A. RISK-NEUTRAL PROBABILITY

To estimate the value of an option, we can form a replicating portfolio composing of

the underlying asset and a risk-free asset. To make this clear, let us consider a single-period
binomial lattice model. E, represents the value of an option in period 0. E| and E;
represent the outcomes of the option at state 1 (up) and at state 2 (down) in period 1,
respectively. E; and E? are known. We want to value E, based on E, and E}.

Let us purchase x dollars worth of X (e.g., x dollars worth of the stock of the existing
generation unit) and y dollars worth of the risk-free asset in period O that will duplicate the
values of E| and E? in period 1. Let r denote risk-free rate of return. In the next period, x +y
will be worth either ux + (1 + r)y if market conditions go up or dx + (1 + r)y if market
conditions go down. Therefore, we have

wx+(Q1+r)y=E|
dx+(+r)y=E}

We have two unknowns, x and y, and two equations. We can solve x and y as

El_ 2
x=—'—i
u—d
uE12 —dExl
y=

C(w-d)(1+r)
Therefore, the value of the portfolio in period 0 is

E;—E5+ uE? —dE|
u—d u—-d)(1+r)
_ 1 (1+r_dEll+
1+r u-d u—d

xX+y=

u—-l-—r

E})
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By the no-arbitrage principle, x + y must be equalto £,. Let p = # , then the value of
u —

the option in period 0 is
1
E, =——(pE; +(1-D)E()
1+7

In the above equation, we discount the expected value of the option in period 1 at risk-free

rate of return to obtain the value of the option in period 0. Therefore, p is called risk-neutral

probability.



126

APPENDIX B. GENERATION PLANNING VIA A MEAN-VARIANCE APPROACH:

PROFIT VS. RISK

B.1  Introduction

Traditional generation planning models have rarely emphasized the stochastic price of
electricity. Therefore, the traditional models may not fully address the risk in capital
investment decision processes under increased financial uncertainties and economic
competition. In this appendix, we attempt to fully reflect the financial risk aspect in capital
investment decision processes by designing and analyzing a particular type of generation
planning models based on the mean-variance approach (see e.g., [S5]).

In order to quantitatively incorporate the risk in capital investment decision processes,
we need to first define risk mathematically. We note that the level of risk may be represented
by the variance of profit (see e.g., [28]) or by the standard deviation of profit (see e.g., [30]).
In this appendix, we will employ both representations in the capital investment decision
processes. Given these mathematical definitions of risk, the rest of model development is as
follows:

In this appendix, the price of electricity is assumed to be a discrete random variable.
Employing this random variable, we then obtain the conditions under which a generation unit
may be temporarily shut down based on profitability. Next, we derive the mathematical
expressions for the mean of the total profit and the variance of the total profit. Finally, we
formulate a mean-variance model that minimizes the variance of the total profit subject to the

minimum acceptable total profit requirement.



127

We then proceed to point out a key limitation of the mean-variance model, and
propose a weighted mean minus standard deviation model that alleviates this limitation. In
this model, an objective function for maximizing the profit while minimizing the variance is
formulated. To assign priority weights on the profit relative to the variance, we employ the
analytical hierarchy process (AHP). Via numerical examples, we briefly compare the mean-
variance model with the weighted mean minus standard deviation model.

The organization of this appendix is as follows. In Section B.2, we present the mean-
variance model. In Section B.3, we formulate a weighted mean minus standard deviation
model. Section B.4 provides the comparison of the mean-variance model and the weighted
mean minus standard deviation model. Concluding remarks and comments on future research
are provided in Section B.5. Finally, we note that, throughout this appendix, we will use the

terms of “generation unit” and “project” interchangeably.

B.2 A Mean-Variance Model

In this section, we first present the conditions under which a generation unit may be
temporarily shut down based on profitability. Employing these conditions, next, we
formulate mathematical expressions for the expected (i.e., mean) total profit and the variance
of the total profit for generation expansion planning projects. Finally, a mean-variance
model is established.
B.2.1 Shutdown and Operating Conditions

We first define the notations used in this section.

Notation:

Jj =index of generation units, j=1,...,J
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t =index of periods, r=1,...,T
Py = discounted per unit selling price of the energy from generation unit j in
period ¢ ($/kWh). It is assumed to be a discrete random variable that has a

price level of a,, with probability «,,, for m=1,...,M ;. P;'s are assumed
to be independent over; and ¢. MM , represents the total number of possible

prices (states) based on general economic conditions, levels of competition,
etc. for generation unit; in period ¢.

d;(Pj)) =energy sold by generation unit ; in period ¢, a function of P; (kWh)

Cjt = discounted per unit variable cost of the energy of generation unit ;j in period
t (3/kWh)

fit =discounted fixed cost of operation for generation unit; in period ¢ (3)

dp;y  =discounted depreciation expense for generation unit j in period ¢ (3)

db;,;  =discounted annual loan repayment of debt for generation unit; in period z ($)

As the electric power industry moves away from a regulated monopoly toward
competition, the price of electricity can not be deterministically decided by a utility. Instead,
the price will be determined by market competition. For the utility, therefore, the price is a

random variable with several possible prices (a, . 's) and their corresponding probabilities

mjt

(@,:'s) depending upon the general economic conditions, levels of competition, etc.
From these definitions, if generation unit j operates in period ¢, the revenue is given
by P;.* d;(P;;) and the cost is given by ¢;* di(P;;) + fi: + dpj. + dbj,. Therefore, the

corresponding profit is given by P;* di(Pj) - ¢;e* dilPjc) - fi: - dpje - dbj.
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On the other hand, if the price gets two low, the utility may temporarily shut down a
generation unit. In this section, we will asstume that each temporary shutdown lasts one
period. If generation unit; gets temporarily- shut down during period ¢, the revenue is given
by zero and the cost is given by dpj, + dbj,. "Therefore, the corresponding profit is given by -
dp;; - dbj;.

Now, we assume that the utility will temporarily shut down a generation unit for one

period based on the level of profit. We defime the desired minimum profit to be 3, for
generation unit j in period . Therefore, if the profit is greater than or equal to £, , then
generation unit j will operate in period ¢. Om the other hand, if the profit is less than 5,

then generation unit j will be shut down in period ¢.

We note that 3, can be negative (i.e., even if the profit is negative, the utility may

still operate, especially when the negative ammount is not substantial). Now, we define the
profit from generation unit j in period ¢ under shutdown and operating conditions by

7 5 P/r) =ij *d’t(Pjt)_cjr *djt(Pjt)_.fjt _dpj: _dbjt

J
if 7;(P)="F;,*d;(F;) ~c;*d;(Fy)~ [ —dp; —db; =
= —dp, —db,

t

if 7;,(F)=F,*d;(Fy) ~c;*d; (Bp) = fi —dp; —db; < B

B.1)

B.2.2 Mean and Variance of the Total Pr-ofit

Based on equation (B.1), an expressHon for the expected profit for generation unit is

given by
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E[z;]1=) Eln,(P;)]

T
= Z (Prob {generation unit j is operating in period 7} *
=1

Profit of generation unit j in period ¢ | operating (B.2)
+ Prob {generating unit ; is temporarily shut down in period ¢} *
Profit of generation unit j in period ¢ | shut down)

To develop the expected total profit (mean of the total profit) for generation

expansion planning projects, first let 4, be the set of indices of prices at which generation
unit j will operate in period ¢. Ajf is the complement of 4, and it denotes the set of indices

of prices at which generation unit j will be shut down. Namely,
A4, = {m | Qi *dj,(amj,)—cj, *dj,(amj,)—fj, —dpj, -dbj, > ﬁj,}
AL ={m|a,, *d, (a,,)—c;, *d, (@)~ f,—dp,—db, <B,}
We let the binary variables x; be 1 if generation expansion planning project is
selected and 0 otherwise. We also assume that all selected projects are operational starting

from period 1. Based on equation (B.2), we have the following mathematical expression for

the expected total profit (mean of the total profit):

E[x]= 2 x;* > Elx ()]

=1

J T
= ij *Z{Zamjt *(amjt *djr(amjt)—cjr *djl(amjt)_f:ir _dpjx —dbjr)

=] =1 med,
+ Zamjl * (_dpjt - db/r)}
mEAﬁ

Since we assume that the price of electricity is a random variable, the profit is also a

random variable. Because the profit will have variance that represents the level of risk, it is
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highly desirable to consider the variance of the total profit in any capital budgeting decision

process. We have the following mathematical expression for the variance of the total profit:

Virl=V[D) x;*D 7 ,(P,)]

j=1 =1

= ixf- *ZT: {Elz;, (P —[E(z (P )]}

j=1 t=1

J T
= ijz *Z{ Z“mﬂ (e ¥d (i) =i *d (@ )~ i —dp; —dby)

j=t =1 med,,

+ Zamjl *(—dpjt —'dbjz)z

[of
med;

—[ Zamjr *(amj: *djr(amjt)—cjt *djt(amj:)—f.jt —dpjt _dbjt)

meA;

+ > a,, *(~dp, ~db, )]}

medS

B.2.3 A Mean-Variance Model

In this subsection, we present the mean-variance model, which is conceptually similar
to the mean-variance portfolio selection in Markowitz [35]. In this model, we minimize the
variance of the total profit subject to minimum acceptable total profit requirement.

Let F be the minimum acceptable level of profit requirement. Then, a mean-variance
model is formulated as follows:

Min V[r]
Subject to

E(n]l=F

where the decision variables are over which generation units will be selected.
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B.2.4 A Numerical Example

In this example, there are three generation expansion planning projects and the
planning horizon is one period. The hypothetical data are listed below.
Data for project 1:

d,,(P,)=1,000—5*P,
a,;, = 70 with probability «,,, =0.2,d,,(70) =650

B,, =1 a,,, =80 with probability a,,, = 0.6,d,,(80) =600
a,,, =90 with probability a,,, = 0.2,d,,(90) =550

¢, =30, f,, =2,000;dp,, =2,000;db,, =2,000; 5, =—1,200

Data for project 2:

d, (P,)=800-2*F,
a,,, = 60 with probability ¢,, =0.2,d,,(60) = 680
PB,, =1{a,, =80 with probability a,,, = 0.4,d,,(80) = 640
as;, =100 with probability a;,, = 0.4,d,,(100) =600
¢, =50; f,, =1,000;dp,, = 2,000;db,, =2,000; 4, =-800

Data for project 3:

d; (£;,)=900-15*F;,
a,;, =40 with probability «;,, =0.5,d;,(40) =300
P, =1 a,;, =50 with probability &,;, = 0.3,d;,(50) =150
a,;, = 60 with probability a,,, =0.2,d,,(60) =0
¢, = 35; f5, =1,000;dp,, = 500,db;, = 500; 35, =200

From these data, we can verify 4;; = {1,2,3}, 421 = {1,2,3}, and 43, = {2} while
AS =4, A5 = ¢, and A7 = {1,3}. It can be verified that the expecetd profit for projects 1, 2,
and 3 is 24,000; 16,040; and -625, respectively. It can also be verified that the variance of

profit for projects 1, 2, and 3 are 4,960,000; 74,022,400; and 328,125, respectively.
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Therefore, we have a binary integer programming formulation for the mean-variance

model as folows:

4960000x] + 74022400x; +328125x

X, 5 %55 %;
Subject to
24000x, +16040x, —625x, = F

We note that the variables x?, x7, and x; can be equivalently represented by
x,,X,,and x;, resulting in the same optimal solution. Hence, employing the LINDO
software package (LINDO Systems Inc. [29]), when ¥ = 20,000, then the optimal solution is
x, =L, x, =0,x; =0 (i.e., 4,960,000 is the smallest variance among feasible solutions).
Hence project 1 is selected. The corresponding profit is 24,000. On the other hand, when F
= 40,000, then the optimal solution is x;, =1,x, =1,x, =0. Hence projects 1 and 2 are
selected. The corresponding profit and variance are 40,040 and 78,982,400, respectively.
We observe that, by doubling the minimum acceptable level of profit requirement from

20,000 to 40,000, the optimal variance has substantially increased from 4,960,000 to

78,982,400.

B.3 A Weighted Mean Minus Standard Deviation Model

The advantage of the mean-variance model is its simplicity. By considering
x2, x2, and x; by x,,x,,and x,, the quadratic objective function of the mean-variance
model becomes linear and can be easily solved. However, one can observe a key limitation

of the mean-variance model in the fixed minimum acceptable level of profit requirement.
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This limitation can be explained in the following hypothetical example. Suppose there are
two feasible solutions. Solution 1 is the optimal solution with the minimum variance with
the profit level at exactly F (the minimum acceptable level of profit requirement). Solution
2, on the other hand, has a slightly higher variance with substantially higher profit relative to
F. By the design of the mean-variance model, solution 2 will not be selected. This, in
practice, however, may not be a reasonable capital budgeting decision process.

To overcome this limitation of the mean-variance model, we propose a weighted
mean minus standard deviation model as follows.

For this new model, we observe first that the profit is desirable and should be
increased while the variance is undesirable and should be decreased. Hence, a certain type of
objective function that maximizes the profit while minimizes the variance would be highly
desirable. The key question then becomes what weight to assign on the profit relative to the
variance. This weight should directly address the possibility of trade-off between the profit
and the variance (i.e., high profit with high variance vs. low profit with low variance).

To assign weights, we first employ the standard deviation to represent the variance.
In this way, the terms of the objective function (the profit minus the standard deviation) will
have the same unit. Next, for relative (or priority) weights of the profit vs. the standard
deviation, we employ the analytic hierarchy process (AHP) as follows.

B.3.1 Priority Weights by AHP

AHP (see e.g., Saaty [43]) 1s an effective way to determine relative priority weights.
For this purpose, we first need to define the goal and the criteria in an AHP diagram. In this
AHP diagram, the goal is to determine the priority weights, and the criteria are the standard

deviation and mean of total profit. Next, we need to construct a hierarchy based on the
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Goal Determining priority weights
|
| |
Standard Mean of total
Criteria deviation of profit
total profit

Figure B.1 An AHP diagram for the mean vs. standard deviation

criteria of the standard deviation vs. the mean. The hierarchy for our model is shown in
Figure B.1. We note that a hierarchy can be constructed with more criteria and/or subcriteria.

Based on the diagram in Figure B.1, by going through the AHP, we can obtain the
priority weights. The actual process of AHP will be explained via a numerical example in
the next subsection. We now proceed to the weighted mean minus standard deviation model.
B.3.2 A Weighted Mean Minus Standard Deviation Model

Let w; be the priority weight of the mean and w-, be the priority weight of the standard
deviation from the AHP. Then, a weighted mean minus standard deviation model is

formulated as follows:

Max w, *E[z]-w, *m
where the decision variables are over which generation units will be selected.
B.3.3 A Numerical Example

In this subsection, we illustrate some of the features of our model via a numerical
example. First, in order to determine the priority weights, pairwise comparisons are
necessary. The pairwise comparisons between the standard deviation and the mean can be

organized into a pairwise comparison matrix. The pairwise comparison matrix consists of
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ej's. ey is a number representing the level of importance of criterion i relative to criterion ;.
There are several important characteristics in the pairwise comparison matrix: When
compared with itself, each criterion has equal importance. Therefore, the diagonal elements
of the pairwise comparison matrix are all equal to 1. Moreover, the lower triangle numbers
of the matrix are the reciprocal of the upper triangle numbers (i.e., ¢; =1/e ). All numbers
in the matrix are positive.

For example, let us assume that the standard deviation of the total profit is two times
as important as the mean of the total profit. Then, a pairwise comparison matrix is formed as

shown in Table B.1.

Table B.1 Structure of pairwise comparison matrix

Standard deviation Mean
Standard deviation 1 2
Mean 172 1

After the pairwise comparison matrix is formed, we can calculate the priority weights
of criteria. First, we divide each e;; of the jth column by the sum of e;'s of the jth column.
Then, we add all e;'s in each resulting row. Finally, the sum is divided by the number of
columns. Via this normalization, we obtain the priority weights of criteria (see e.g., Son and
Min [46]).

Therefore, from Table B.1, we first devide 1 and 1/2 of the first column by 3/2, which
is the sum of 1 and 1/2. We obtain 2/3 and 1/3 in the first column of Table B.2. Similarly,
we divide 2 and 1 of the second column in Table B.1 by 3, which is the sum of 2 and 1. We

obtain 2/3 and 1/3 in the second column of Table B.2. Next, we calculate the sum of each
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row in Table B.2. The sum of the first row in Table B.2 is equal to 4/3 (1.333). The sum of
the second row in Table B.2 is equal to 2/3 (0.667). Finally, we divide 1.333 by 2, which is
the number of columns, and obtain 0.666. We note that 0.666 is the priority weight for the
standard deviation of the total profit (i.e., w, = 0.666). Similarly, we divide 0.667 by 2 and
obtain 0.334. We note that 0.334 is the priority weight for the mean of the total profit (i.e.,

w; = 0.334).

Table B.2 Priority weights of criteria

Standard dev. Mean Row sum Priority weights
Standard dev. 2/3 2/3 1.333 0.666
Mean 1/3 1/3 0.667 0.334

We note that, in this section, we do not address the issue of consistency in
comparison matrices because the data are hypothetical. In practice, with real data, one needs
to address this issue (see e.g., Saaty [43]).

Given these priority weights, recall that the mean and variance of each project, j =
1,2,3, are provided in Subsection 2.2.4. Hence, the corresponding weighted mean minus

standard deviation model is as follows:

0.334*(24000x, +16040x, — 625x,)

Xy5X55%3

—0.666 *,/4960000x] +74022400x; +328125x]

where x,,x,,x; are binary integers.
This binary nonlinear integer programming problem is solved by enumeration, and
the corresponding global optimal solution is: x; = 1, x; =1, and x3 = 0. i.e.,, projects 1 and 2

are selected. The corresponding objective function value is 7454.48. We note that LINGO
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software package (LINDO Systems Inc. [29]) can solve binary nonlinear integer

programming problems. However, by LINGO, only a local optimum can be identified.

B.4  Comparison of Results

The optimal solution for the mean-variance model when F' = 20,000 is

x, =1, x, =0,x; =0. The corresponding mean and variance of the total profit are 24,000 and

4,960,000, respectively. We do note that there may be feasible solutions that have
substantially higher profits and slightly higher variances than this optimal solution (which is
a key limitation of the mean-variance model).

The optimal solution for the \.uveighted mean minus standard deviation model is

x, =1,x, =1,x; =0. The corresponding mean and variance of the total profit are 40,040 and

78,982,400, respectively. We first observe that both mean and standard deviation are
considered in the objective. Hence, it is now possible that the feasible solution that has
substantially higher profit and slightly higher variance of the previous case becomes the
optimal solution. We also observe that the priority weights would depend on a particular
decision maker's degree of risk-aversion. i.e., if the decision maker is more (less) risk-

averse, then the priority weight for the standard deviation will be higher (lower).

B.S Concluding Remarks

In this appendix, we first presented the conditions under which a generation unit may
be temporarily shut down based on profitability. From these conditions, we presented the
mathematical expressions for both mean and variance of the total profit. Then, we

formulated a mean-variance model. From this model, we selected the projects that would
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minimize the variance of the total profit subject to the minimum acceptable total profit
requirement.

Next, we introduced how to obtain priority weights for the mean and standard
deviation of the total profit via the AHP. By assigning these priority weights to the mean and
the standard deviation, we formulated a weighted mean minus standard deviation model.
Nlustrative numerical examples were provided for both mean-variance model and weighted
mean minus standard deviation model. Finally, comparison of the results of the numerical
examples was presented.

For future research, it would be worthwhile to examine various economic and
financial conditions under which the mean-variance model (or the weighted mean minus

standard deviation model) is more appropriate.
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